Model-based Analysis of Mining Fairness in a Blockchain
- URL: http://arxiv.org/abs/2406.00595v1
- Date: Sun, 2 Jun 2024 02:27:28 GMT
- Title: Model-based Analysis of Mining Fairness in a Blockchain
- Authors: Akira Sakurai, Kazuyuki Shudo,
- Abstract summary: Mining fairness in blockchain refers to the equality between the computational resources invested in mining and the block rewards received.
We propose a method to calculate mining fairness using a simple mathematical model.
We validated that our method accurately computes mining fairness in networks with a small number of miners.
- Score: 2.9281463284266973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mining fairness in blockchain refers to the equality between the computational resources invested in mining and the block rewards received. There exists a dilemma where increasing the blockchain's transaction processing capacity damages mining fairness, consequently undermining its decentralization. This dilemma remains unresolved even with methods such as GHOST, indicating that mining fairness is an inherent bottleneck to the system's transaction processing capacity. Despite its significance, there have been insufficient studies quantitatively analyzing mining fairness. In this paper, we propose a method to calculate mining fairness. Initially, we approximate a complex blockchain network using a simple mathematical model, assuming that no more than two blocks are generated per round. Within this model, we quantitatively determine local mining fairness and derive several measures of global mining fairness based on local mining fairness. We validated that our calculation method accurately computes mining fairness in networks with a small number of miners. Furthermore, we analyzed various networks from the perspective of mining fairness.
Related papers
- BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREE is a post-processing algorithm developed specifically for distribution-free fair learning in decentralized settings with small samples.
We provide rigorous theoretical guarantees for both fairness and accuracy, and our experimental results further provide robust empirical validation for our proposed method.
arXiv Detail & Related papers (2024-02-25T17:37:53Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Cobalt: Optimizing Mining Rewards in Proof-of-Work Network Games [6.052883613180156]
A key factor affecting mining rewards earned is the connectivity between miners in the peer-to-peer network.
We formulate the problem of deciding whom to connect to for miners as a bandit problem.
A key contribution of our work is the use of network coordinates based model for learning the network structure within the bandit algorithm.
arXiv Detail & Related papers (2023-07-10T16:50:58Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
This paper introduces the Fair Fairness Benchmark (textsfFFB), a benchmarking framework for in-processing group fairness methods.
We provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness.
arXiv Detail & Related papers (2023-06-15T19:51:28Z) - A Collaboration Strategy in the Mining Pool for
Proof-of-Neural-Architecture Consensus [16.372941299296652]
In most popular public accessible cryptocurrency systems, the mining pool plays a key role because mining cryptocurrency with the mining pool turns the non-profitable situation into profitable for individual miners.
In many recent novel blockchain consensuses, the deep learning training procedure becomes the task for miners to prove their workload.
While the incentive of miners is to earn tokens, individual miners are motivated to join mining pools to become more competitive.
arXiv Detail & Related papers (2022-05-05T17:08:02Z) - HDCoin: A Proof-of-Useful-Work Based Blockchain for Hyperdimensional
Computing [2.7462881838152913]
This paper introduces HDCoin, a blockchain-based framework for an emerging machine learning scheme: the brain-inspired hyperdimensional computing (HDC)
Under the HDC scenario, miners are competing to obtain the highest test accuracy on a given dataset.
The winner has its model recorded in the blockchain and are available for the public as a trustworthy HDC model.
arXiv Detail & Related papers (2022-02-07T06:21:29Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z) - Equilibrium of Blockchain Miners with Dynamic Asset Allocation [4.030037871304249]
We model and analyze blockchain miners who seek to maximize the compound return of their mining businesses.
The cost of mining determines the share of each miner or mining pool at equilibrium.
We conclude that neither miners nor mining pools who seek to maximize their compound return will have a financial incentive to occupy more than 50% of the hash rate.
arXiv Detail & Related papers (2020-06-14T20:52:31Z) - Toward Low-Cost and Stable Blockchain Networks [10.790006312359795]
We propose a blockchain mining resources allocation algorithm to reduce the mining cost in PoW-based (proof-of-work-based) blockchain networks.
arXiv Detail & Related papers (2020-02-19T06:42:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.