Ensemble Deep Random Vector Functional Link Neural Network Based on Fuzzy Inference System
- URL: http://arxiv.org/abs/2406.00801v2
- Date: Sun, 14 Jul 2024 08:37:14 GMT
- Title: Ensemble Deep Random Vector Functional Link Neural Network Based on Fuzzy Inference System
- Authors: M. Sajid, M. Tanveer, P. N. Suganthan,
- Abstract summary: ensemble deep random vector functional link (edRVFL) neural network has demonstrated the ability to address the limitations of conventional artificial neural networks.
We propose a novel edRVFL based on fuzzy inference system (edRVFL-FIS) to enhance the feature learning capabilities of edRVFL.
- Score: 0.6437284704257459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ensemble deep random vector functional link (edRVFL) neural network has demonstrated the ability to address the limitations of conventional artificial neural networks. However, since edRVFL generates features for its hidden layers through random projection, it can potentially lose intricate features or fail to capture certain non-linear features in its base models (hidden layers). To enhance the feature learning capabilities of edRVFL, we propose a novel edRVFL based on fuzzy inference system (edRVFL-FIS). The proposed edRVFL-FIS leverages the capabilities of two emerging domains, namely deep learning and ensemble approaches, with the intrinsic IF-THEN properties of fuzzy inference system (FIS) and produces rich feature representation to train the ensemble model. Each base model of the proposed edRVFL-FIS encompasses two key feature augmentation components: a) unsupervised fuzzy layer features and b) supervised defuzzified features. The edRVFL-FIS model incorporates diverse clustering methods (R-means, K-means, Fuzzy C-means) to establish fuzzy layer rules, resulting in three model variations (edRVFL-FIS-R, edRVFL-FIS-K, edRVFL-FIS-C) with distinct fuzzified features and defuzzified features. Within the framework of edRVFL-FIS, each base model utilizes the original, hidden layer and defuzzified features to make predictions. Experimental results, statistical tests, discussions and analyses conducted across UCI and NDC datasets consistently demonstrate the superior performance of all variations of the proposed edRVFL-FIS model over baseline models. The source codes of the proposed models are available at https://github.com/mtanveer1/edRVFL-FIS.
Related papers
- Learning local discrete features in explainable-by-design convolutional neural networks [0.0]
We introduce an explainable-by-design convolutional neural network (CNN) based on the lateral inhibition mechanism.
The model consists of the predictor, that is a high-accuracy CNN with residual or dense skip connections.
By collecting observations and directly calculating probabilities, we can explain causal relationships between motifs of adjacent levels.
arXiv Detail & Related papers (2024-10-31T18:39:41Z) - Noise-Resilient Unsupervised Graph Representation Learning via Multi-Hop Feature Quality Estimation [53.91958614666386]
Unsupervised graph representation learning (UGRL) based on graph neural networks (GNNs)
We propose a novel UGRL method based on Multi-hop feature Quality Estimation (MQE)
arXiv Detail & Related papers (2024-07-29T12:24:28Z) - ASU-CNN: An Efficient Deep Architecture for Image Classification and
Feature Visualizations [0.0]
Activation functions play a decisive role in determining the capacity of Deep Neural Networks.
In this paper, a Convolutional Neural Network model named as ASU-CNN is proposed.
The network achieved promising results on both training and testing data for the classification of CIFAR-10.
arXiv Detail & Related papers (2023-05-28T16:52:25Z) - Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification [0.0]
We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs)
For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data.
We show that the models outperform a benchmark model from FDA in terms of accuracy and successfully use FNNs to classify electroencephalography (EEG) data.
arXiv Detail & Related papers (2023-01-14T09:41:21Z) - A new perspective on probabilistic image modeling [92.89846887298852]
We present a new probabilistic approach for image modeling capable of density estimation, sampling and tractable inference.
DCGMMs can be trained end-to-end by SGD from random initial conditions, much like CNNs.
We show that DCGMMs compare favorably to several recent PC and SPN models in terms of inference, classification and sampling.
arXiv Detail & Related papers (2022-03-21T14:53:57Z) - Random vector functional link network: recent developments,
applications, and future directions [5.2848042940993345]
Randomization based neural networks such as random vector functional link (RVFL) network have been proposed.
RVFL model has several characteristics such as fast training speed, direct links, simple architecture, and universal approximation capability.
This article presents the first comprehensive review of the evolution of RVFL model.
arXiv Detail & Related papers (2022-02-13T05:02:52Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Linear Iterative Feature Embedding: An Ensemble Framework for
Interpretable Model [6.383006473302968]
A new ensemble framework for interpretable model called Linear Iterative Feature Embedding (LIFE) has been developed.
LIFE is able to fit a wide single-hidden-layer neural network (NN) accurately with three steps.
LIFE consistently outperforms directly trained single-hidden-layer NNs and also outperforms many other benchmark models.
arXiv Detail & Related papers (2021-03-18T02:01:17Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Learning to Learn Kernels with Variational Random Features [118.09565227041844]
We introduce kernels with random Fourier features in the meta-learning framework to leverage their strong few-shot learning ability.
We formulate the optimization of MetaVRF as a variational inference problem.
We show that MetaVRF delivers much better, or at least competitive, performance compared to existing meta-learning alternatives.
arXiv Detail & Related papers (2020-06-11T18:05:29Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
We propose Micro-Dense Nets, a novel architecture with global residual learning and local micro-dense aggregations.
Our micro-dense block can be integrated with neural architecture search based models to boost their performance.
arXiv Detail & Related papers (2020-04-19T08:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.