論文の概要: Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits
- arxiv url: http://arxiv.org/abs/2406.00843v2
- Date: Sun, 17 Nov 2024 22:10:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:30:19.416847
- Title: Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits
- Title(参考訳): パラメータ化量子回路における拡散誘起量子ノイズ低減
- Authors: Hoang-Quan Nguyen, Xuan Bac Nguyen, Samuel Yen-Chi Chen, Hugh Churchill, Nicholas Borys, Samee U. Khan, Khoa Luu,
- Abstract要約: 量子ノイズと拡散モデルの関係について検討する。
本稿では,PQCにおける量子ノイズを軽減するために,拡散に着想を得た新しい学習手法を提案する。
- 参考スコア(独自算出の注目度): 10.073911279652918
- License:
- Abstract: Parameterized Quantum Circuits (PQCs) have been acknowledged as a leading strategy to utilize near-term quantum advantages in multiple problems, including machine learning and combinatorial optimization. When applied to specific tasks, the parameters in the quantum circuits are trained to minimize the target function. Although there have been comprehensive studies to improve the performance of the PQCs on practical tasks, the errors caused by the quantum noise downgrade the performance when running on real quantum computers. In particular, when the quantum state is transformed through multiple quantum circuit layers, the effect of the quantum noise happens cumulatively and becomes closer to the maximally mixed state or complete noise. This paper studies the relationship between the quantum noise and the diffusion model. Then, we propose a novel diffusion-inspired learning approach to mitigate the quantum noise in the PQCs and reduce the error for specific tasks. Through our experiments, we illustrate the efficiency of the learning strategy and achieve state-of-the-art performance on classification tasks in the quantum noise scenarios.
- Abstract(参考訳): パラメータ化量子回路(PQC)は、機械学習や組合せ最適化を含む複数の問題において、短期的な量子アドバンテージを利用するための主要な戦略として認識されている。
特定のタスクに適用すると、量子回路のパラメータは、ターゲット関数を最小限にするために訓練される。
実用的なタスクにおけるPQCの性能を改善するための包括的な研究があるが、実際の量子コンピュータ上での量子ノイズによる誤差は性能を低下させる。
特に、量子状態が複数の量子回路層を通して変換されると、量子ノイズの効果は累積的に発生し、最大混合状態または完全ノイズに近づく。
本稿では,量子ノイズと拡散モデルの関係について検討する。
そこで本研究では,PQCにおける量子ノイズを緩和し,特定のタスクに対する誤差を低減するために,拡散に着想を得た新しい学習手法を提案する。
実験を通じて,学習戦略の効率を概説し,量子ノイズシナリオにおける分類タスクにおける最先端のパフォーマンスを実現する。
関連論文リスト
- Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
本稿では、シミュレーションされたフォールトトレラント量子コンピュータの分光特性を求める量子線形応答理論について述べる。
この研究は、量子アルゴリズムにおけるノイズの起源を分析し予測するための新しいメトリクスを導入している。
パウリ省エネによる計測コストと騒音の低減効果を強調した。
論文 参考訳(メタデータ) (2024-08-17T23:46:17Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
一般化誤差が小さい場合でも,量子カーネル法は予測能力に乏しい。
我々は、量子計算にノイズの多い量子カーネル法を用いるために重要な警告を提供する。
論文 参考訳(メタデータ) (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
変分量子アルゴリズム(VQA)は、ノイズプロセッサを介して量子アドバンテージを得るための最も有望な経路を提供する。
不完全性とデコヒーレンスによるゲートノイズは、バイアスを導入して勾配推定に影響を与える。
QEM(Quantum error mitigation)技術は、キュービット数の増加を必要とせずに、推定バイアスを低減することができる。
QEMは必要な反復回数を減らすことができるが、量子ノイズレベルが十分に小さい限りである。
論文 参考訳(メタデータ) (2022-09-23T10:48:04Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum Error Mitigation via Quantum-Noise-Effect Circuit Groups [0.0]
短期量子コンピュータは、量子ノイズ効果に対して脆弱である。
従来の量子エラー訂正コードはそのようなデバイスには実装されていない。
量子計算誤差に対する量子誤差緩和(QEM)方式を提案する。
論文 参考訳(メタデータ) (2022-05-27T11:21:35Z) - Impact of quantum noise on the training of quantum Generative
Adversarial Networks [0.0]
我々は、異なる種類の量子ノイズが存在する場合の量子生成逆数ネットワーク(qGAN)の性能について、最初の研究を行う。
特に,qGAN学習過程におけるリードアウトと2ビットゲート誤差の影響について検討する。
論文 参考訳(メタデータ) (2022-03-02T10:35:34Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。