Evidence of Learned Look-Ahead in a Chess-Playing Neural Network
- URL: http://arxiv.org/abs/2406.00877v1
- Date: Sun, 2 Jun 2024 21:57:32 GMT
- Title: Evidence of Learned Look-Ahead in a Chess-Playing Neural Network
- Authors: Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, Stuart Russell,
- Abstract summary: We present evidence of learned look-ahead in the policy network of Chess Leela Zero.
We find that Leela internally represents future optimal moves and that these representations are crucial for its final output in certain board states.
These findings are an existence proof of learned look-ahead in neural networks and might be a step towards a better understanding of their capabilities.
- Score: 11.746104876318606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Do neural networks learn to implement algorithms such as look-ahead or search "in the wild"? Or do they rely purely on collections of simple heuristics? We present evidence of learned look-ahead in the policy network of Leela Chess Zero, the currently strongest neural chess engine. We find that Leela internally represents future optimal moves and that these representations are crucial for its final output in certain board states. Concretely, we exploit the fact that Leela is a transformer that treats every chessboard square like a token in language models, and give three lines of evidence (1) activations on certain squares of future moves are unusually important causally; (2) we find attention heads that move important information "forward and backward in time," e.g., from squares of future moves to squares of earlier ones; and (3) we train a simple probe that can predict the optimal move 2 turns ahead with 92% accuracy (in board states where Leela finds a single best line). These findings are an existence proof of learned look-ahead in neural networks and might be a step towards a better understanding of their capabilities.
Related papers
- Predicting User Perception of Move Brilliance in Chess [3.434553688053531]
We show the first system for classifying chess moves as brilliant.
The system achieves an accuracy of 79% (with 50% base-rate), a PPV of 83%, and an NPV of 75%.
We show that a move is more likely to be predicted as brilliant, all things being equal, if a weaker engine considers it lower-quality.
arXiv Detail & Related papers (2024-06-14T17:46:26Z) - Amortized Planning with Large-Scale Transformers: A Case Study on Chess [11.227110138932442]
This paper uses chess, a landmark planning problem in AI, to assess performance on a planning task.
ChessBench is a large-scale benchmark of 10 million chess games with legal move and value annotations (15 billion points) provided by Stockfish.
We show that, although a remarkably good approximation can be distilled into large-scale transformers via supervised learning, perfect distillation is still beyond reach.
arXiv Detail & Related papers (2024-02-07T00:36:24Z) - Learning to Play Chess from Textbooks (LEAP): a Corpus for Evaluating
Chess Moves based on Sentiment Analysis [4.314956204483074]
This paper examines chess textbooks as a new knowledge source for enabling machines to learn how to play chess.
We developed the LEAP corpus, a first and new heterogeneous dataset with structured (chess move notations and board states) and unstructured data.
We performed empirical experiments that assess the performance of various transformer-based baseline models for sentiment analysis.
arXiv Detail & Related papers (2023-10-31T08:26:02Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - IF2Net: Innately Forgetting-Free Networks for Continual Learning [49.57495829364827]
Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge.
Motivated by the characteristics of neural networks, we investigated how to design an Innately Forgetting-Free Network (IF2Net)
IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time.
arXiv Detail & Related papers (2023-06-18T05:26:49Z) - Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic Task [75.35278593566068]
Language models show a surprising range of capabilities, but the source of their apparent competence is unclear.
Do these networks just memorize a collection of surface statistics, or do they rely on internal representations of the process that generates the sequences they see?
We investigate this question by applying a variant of the GPT model to the task of predicting legal moves in a simple board game, Othello.
arXiv Detail & Related papers (2022-10-24T16:29:55Z) - Acquisition of Chess Knowledge in AlphaZero [14.41428465712717]
We show that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess.
By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network.
We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik.
arXiv Detail & Related papers (2021-11-17T17:46:19Z) - Reasoning-Modulated Representations [85.08205744191078]
We study a common setting where our task is not purely opaque.
Our approach paves the way for a new class of data-efficient representation learning.
arXiv Detail & Related papers (2021-07-19T13:57:13Z) - Determining Chess Game State From an Image [19.06796946564999]
This paper puts forth a new dataset synthesised from a 3D model that is an order of magnitude larger than existing ones.
A novel end-to-end chess recognition system is presented that combines traditional computer vision techniques with deep learning.
The described system achieves an error rate of 0.23% per square on the test set, 28 times better than the current state of the art.
arXiv Detail & Related papers (2021-04-30T13:02:13Z) - Learning Chess Blindfolded: Evaluating Language Models on State Tracking [69.3794549747725]
We consider the task of language modeling for the game of chess.
Unlike natural language, chess notations describe a simple, constrained, and deterministic domain.
We find that transformer language models can learn to track pieces and predict legal moves with high accuracy when trained solely on move sequences.
arXiv Detail & Related papers (2021-02-26T01:16:23Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.