Towards Effective Detection of Ponzi schemes on Ethereum with Contract Runtime Behavior Graph
- URL: http://arxiv.org/abs/2406.00921v1
- Date: Mon, 3 Jun 2024 01:17:48 GMT
- Title: Towards Effective Detection of Ponzi schemes on Ethereum with Contract Runtime Behavior Graph
- Authors: Ruichao Liang, Jing Chen, Cong Wu, Kun He, Yueming Wu, Weisong Sun, Ruiying Du, Qingchuan Zhao, Yang Liu,
- Abstract summary: Ponzi schemes, a form of scam, have been discovered in smart contracts in recent years, causing massive financial losses.
Existing detection methods primarily focus on rule-based approaches and machine learning techniques.
We propose PonziGuard, an efficient Ponzi detection approach based on contract runtime behavior.
- Score: 17.79695486585971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ponzi schemes, a form of scam, have been discovered in Ethereum smart contracts in recent years, causing massive financial losses. Existing detection methods primarily focus on rule-based approaches and machine learning techniques that utilize static information as features. However, these methods have significant limitations. Rule-based approaches rely on pre-defined rules with limited capabilities and domain knowledge dependency. Using static information like opcodes for machine learning fails to effectively characterize Ponzi contracts, resulting in poor reliability and interpretability. Moreover, relying on static information like transactions for machine learning requires a certain number of transactions to achieve detection, which limits the scalability of detection and hinders the identification of 0-day Ponzi schemes. In this paper, we propose PonziGuard, an efficient Ponzi scheme detection approach based on contract runtime behavior. Inspired by the observation that a contract's runtime behavior is more effective in disguising Ponzi contracts from the innocent contracts, PonziGuard establishes a comprehensive graph representation called contract runtime behavior graph (CRBG), to accurately depict the behavior of Ponzi contracts. Furthermore, it formulates the detection process as a graph classification task on CRBG, enhancing its overall effectiveness. The experiment results show that PonziGuard surpasses the current state-of-the-art approaches in the ground-truth dataset. We applied PonziGuard to Ethereum Mainnet and demonstrated its effectiveness in real-world scenarios. Using PonziGuard, we identified 805 Ponzi contracts on Ethereum Mainnet, which have resulted in an estimated economic loss of 281,700 Ether or approximately $500 million USD. We also found 0-day Ponzi schemes in the recently deployed 10,000 smart contracts.
Related papers
- Semantic Sleuth: Identifying Ponzi Contracts via Large Language Models [10.770371122781956]
PonziSleuth is the first LLM-driven approach for detecting Ponzi smart contracts.
It delivers comparable, and often superior, performance without the extensive data requirements.
In real-world detection, PonziSleuth successfully identified 15 new Ponzi schemes from 4,597 contracts verified by Etherscan in March 2024.
arXiv Detail & Related papers (2024-11-12T02:54:59Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - Improving the Accuracy of Transaction-Based Ponzi Detection on Ethereum [13.233535179219633]
Ponzi scheme, an old-fashioned fraud, is now popular on the blockchain.
Most Ponzi detection methods detect a Ponzi scheme based on its smart contract source code.
We propose a new set of 85 features (22 known account-based and 63 new time-series features) which allows machine learning algorithms to achieve up to 30% higher F1-scores.
arXiv Detail & Related papers (2023-08-31T01:54:31Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - SourceP: Detecting Ponzi Schemes on Ethereum with Source Code [0.5898893619901381]
SourceP is a method to detect smart Ponzi schemes on the platform using pre-trained models and data flow.
We first convert the source code of a smart contract into a data flow graph and then introduce a pre-trained model based on learning code representations to build a classification model.
The experimental results show that SourceP achieves 87.2% recall and 90.7% F-score for detecting smart Ponzi schemes.
arXiv Detail & Related papers (2023-06-02T16:40:42Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Explainable Ponzi Schemes Detection on Ethereum [1.3812010983144802]
Ponzi schemes are one of the most common scams.
In this paper, we present a classifier for detecting smart Ponzi contracts on the real-world.
We identify a small and effective set of features that ensures a good classification quality and investigate their impacts on the classification using AI techniques.
arXiv Detail & Related papers (2023-01-12T08:38:23Z) - Data-driven Smart Ponzi Scheme Detection [11.467476506780969]
A smart Ponzi scheme is a new form of economic crime that uses smart contract account and cryptocurrency to implement Ponzi scheme.
We propose a data-driven smart Ponzi scheme detection system in this paper.
Compared with traditional methods, the proposed system requires very limited human-computer interaction.
arXiv Detail & Related papers (2021-08-20T07:45:36Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z) - Real-Time Anomaly Detection in Edge Streams [49.26098240310257]
We propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges.
We further propose MIDAS-F, to solve the problem by which anomalies are incorporated into the algorithm's internal states.
Experiments show that MIDAS-F has significantly higher accuracy than MIDAS.
arXiv Detail & Related papers (2020-09-17T17:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.