論文の概要: HBTP: Heuristic Behavior Tree Planning with Large Language Model Reasoning
- arxiv url: http://arxiv.org/abs/2406.00965v4
- Date: Thu, 10 Oct 2024 02:36:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 10:39:00.342751
- Title: HBTP: Heuristic Behavior Tree Planning with Large Language Model Reasoning
- Title(参考訳): HBTP:大規模言語モデル推論を用いたヒューリスティック行動木計画
- Authors: Yishuai Cai, Xinglin Chen, Yunxin Mao, Minglong Li, Shaowu Yang, Wenjing Yang, Ji Wang,
- Abstract要約: Heuristic Behavior Tree Planning (HBTP) はBT生成のための信頼性と効率的なフレームワークである。
本稿では,BT拡張プロセスと最適計画と満足度計画のための2つの変種を紹介する。
実験では、HBTPの理論的限界を示し、4つのデータセットから得られた結果により、日々のサービスロボット応用における実用性が確認された。
- 参考スコア(独自算出の注目度): 6.2560501421348
- License:
- Abstract: Behavior Trees (BTs) are increasingly becoming a popular control structure in robotics due to their modularity, reactivity, and robustness. In terms of BT generation methods, BT planning shows promise for generating reliable BTs. However, the scalability of BT planning is often constrained by prolonged planning times in complex scenarios, largely due to a lack of domain knowledge. In contrast, pre-trained Large Language Models (LLMs) have demonstrated task reasoning capabilities across various domains, though the correctness and safety of their planning remain uncertain. This paper proposes integrating BT planning with LLM reasoning, introducing Heuristic Behavior Tree Planning (HBTP)-a reliable and efficient framework for BT generation. The key idea in HBTP is to leverage LLMs for task-specific reasoning to generate a heuristic path, which BT planning can then follow to expand efficiently. We first introduce the heuristic BT expansion process, along with two heuristic variants designed for optimal planning and satisficing planning, respectively. Then, we propose methods to address the inaccuracies of LLM reasoning, including action space pruning and reflective feedback, to further enhance both reasoning accuracy and planning efficiency. Experiments demonstrate the theoretical bounds of HBTP, and results from four datasets confirm its practical effectiveness in everyday service robot applications.
- Abstract(参考訳): 動作木(BT)は、モジュール性、反応性、堅牢性により、ロボット工学において一般的な制御構造になりつつある。
BT生成法では、BTプランニングは信頼性の高いBTを生成することを約束する。
しかし、BT計画のスケーラビリティは複雑なシナリオにおける長期計画時間によって制約されることが多い。
対照的に、事前訓練されたLarge Language Models (LLMs) は、様々な領域にわたるタスク推論能力を示しているが、その計画の正確性や安全性は未だに不明である。
本稿では,BT 生成のための信頼性と効率的なフレームワークであるヒューリスティック行動木計画 (HBTP) を導入し,BT 計画と LLM 推論の統合を提案する。
HBTPの鍵となる考え方は、LLMをタスク固有の推論に利用してヒューリスティックパスを生成し、BTプランニングによって効率的に拡張できるというものだ。
まず、最適計画と満足度計画のための2つのヒューリスティック変種とともに、ヒューリスティックBT拡張プロセスを紹介する。
そこで本研究では,LLM推論の不正確性に対処する手法を提案する。
実験では、HBTPの理論的限界を示し、4つのデータセットから得られた結果により、日々のサービスロボット応用における実用性が確認された。
関連論文リスト
- Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - Integrating Intent Understanding and Optimal Behavior Planning for Behavior Tree Generation from Human Instructions [5.31484618181979]
動作木(BT)は、人間の指示に従ってタスクを実行するロボットのための適切な制御アーキテクチャである。
本稿では,BT生成のための2段階のフレームワークを提案する。
我々は、一階述語論理における目的と十分に整形された公式を表現し、意図の理解と最適な行動計画を効果的にブリッジする。
論文 参考訳(メタデータ) (2024-05-13T05:23:48Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
我々は任意の解法によって生成されるPOMDP実行から高品質なトレースを学習する。
我々は、データと時間効率のIndu Logic Programming(ILP)を利用して、解釈可能な信念に基づくポリシー仕様を生成する。
ASP(Answer Set Programming)で表現された学習は、ニューラルネットワークよりも優れた性能を示し、より少ない計算時間で最適な手作りタスクに類似していることを示す。
論文 参考訳(メタデータ) (2024-02-29T15:36:01Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
収集された軌道上でのDPO(Direct Preference Optimization)を通して計画に基づく推論を学習するフレームワークを提案する。
論理的推論ベンチマークの挑戦的な結果から,学習フレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-02-01T15:18:33Z) - A Study on Training and Developing Large Language Models for Behavior
Tree Generation [22.632022793663516]
本稿では,大規模言語モデル(LLM)の適用可能性について,革新的な考察を行う。
本論文の中核となる貢献は,LLMに基づくBT生成フレームワークの設計である。
生成したBTの有効性と実行性を確保するため,データ検証の重要性を強調した。
論文 参考訳(メタデータ) (2024-01-16T03:28:29Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
LLM(Large Language Models)の固有の確率論的性質は、予測不可能な要素を導入している。
本稿では,多様な現実の要求やシナリオに対して,適切なロボットタスク計画を作成することを目的とした,革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-15T18:01:59Z) - Tree-Planner: Efficient Close-loop Task Planning with Large Language Models [63.06270302774049]
Tree-Plannerは、大きな言語モデルでタスクプランニングを3つの異なるフェーズに再構成する。
Tree-Plannerは高い効率を維持しながら最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-12T17:59:50Z) - EmbodiedGPT: Vision-Language Pre-Training via Embodied Chain of Thought [95.37585041654535]
Embodied AIは、ロボットが物理的な環境で長時間のタスクを遂行するためのアクションシーケンスを計画し、実行することができる。
本稿では,EmbodiedGPTを紹介する。EmbodiedGPTは,エンボディドAIのためのエンドツーエンドのマルチモーダル基盤モデルである。
実験は、実施計画、実施制御、視覚的キャプション、視覚的質問応答など、実施されたタスクに対するEmbodiedGPTの有効性を示す。
論文 参考訳(メタデータ) (2023-05-24T11:04:30Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
本稿では,象徴的タスク計画と機械学習アプローチのギャップを埋めることを目的としたフレームワークを提案する。
大規模言語モデル(LLM)を計画ドメイン定義言語(PDDL)と互換性のあるニューロシンボリックタスクプランナーに訓練する根拠
選択されたドメインにおける予備的な結果から, (i) テストデータセットの95.5%の問題を1,000個のサンプルで解決し, (ii) 従来のシンボルプランナーよりも最大13.5%短いプランを作成し, (iii) 計画の可利用性の平均待ち時間を61.4%まで削減する。
論文 参考訳(メタデータ) (2023-03-01T11:54:22Z) - Visual Learning-based Planning for Continuous High-Dimensional POMDPs [81.16442127503517]
Visual Tree Search (VTS)は、オフラインで学習した生成モデルとオンラインモデルベースのPOMDP計画を組み合わせた学習と計画の手順である。
VTSは、モンテカルロの木探索プランナーにおける画像観測の可能性を予測し評価するために、一連の深部生成観測モデルを利用することで、オフラインモデルトレーニングとオンラインプランニングを橋渡しする。
VTSは、異なる観測ノイズに対して堅牢であり、オンラインのモデルベースプランニングを利用するため、再トレーニングを必要とせずに、異なる報酬構造に適応できることを示す。
論文 参考訳(メタデータ) (2021-12-17T11:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。