論文の概要: CUT: A Controllable, Universal, and Training-Free Visual Anomaly Generation Framework
- arxiv url: http://arxiv.org/abs/2406.01078v1
- Date: Mon, 3 Jun 2024 07:58:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:58:18.651258
- Title: CUT: A Controllable, Universal, and Training-Free Visual Anomaly Generation Framework
- Title(参考訳): CUT: コントロール可能な、ユニバーサルで、トレーニング不要なビジュアル異常生成フレームワーク
- Authors: Han Sun, Yunkang Cao, Olga Fink,
- Abstract要約: 我々は、制御可能、ユニバーサル、およびトレーニング不要な視覚異常生成フレームワークであるCUTを提案する。
不可視データと新規な異常型の両方にわたって,制御可能かつ現実的な異常生成を実現する。
生成した異常サンプルを用いてVLADモデルをトレーニングすることにより、複数のベンチマーク異常検出タスクで最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 11.609545429511595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual anomaly detection (AD) inherently faces significant challenges due to the scarcity of anomalous data. Although numerous works have been proposed to synthesize anomalous samples, the generated samples often lack authenticity or can only reflect the distribution of the available training data samples. In this work, we propose CUT: a Controllable, Universal and Training-free visual anomaly generation framework, which leverages the capability of Stable Diffusion (SD) in image generation to generate diverse and realistic anomalies. With CUT, we achieve controllable and realistic anomaly generation universally across both unseen data and novel anomaly types, using a single model without acquiring additional training effort. To demonstrate the effectiveness of our approach, we propose a Vision-Language-based Anomaly Detection framework (VLAD). By training the VLAD model with our generated anomalous samples, we achieve state-of-the-art performance on several benchmark anomaly detection tasks, highlighting the significant improvements enabled by our synthetic data.
- Abstract(参考訳): 視覚異常検出(AD)は、異常データの不足により本質的に重大な課題に直面している。
異常サンプルを合成するための多くの研究が提案されているが、生成されたサンプルは信頼性に欠けることが多く、利用可能なトレーニングデータサンプルの分布のみを反映できる。
本研究では,画像生成における安定拡散(SD)の能力を生かして,多種多様な現実的な異常を生成する,制御可能・ユニバーサル・トレーニング不要な視覚異常生成フレームワークCUTを提案する。
CUTでは、新たなトレーニングを行なわずに単一のモデルを用いて、目に見えないデータと新しい異常タイプの両方にわたって、制御可能で現実的な異常生成を実現する。
提案手法の有効性を示すために,視覚言語に基づく異常検出フレームワーク(VLAD)を提案する。
生成した異常サンプルを用いてVLADモデルをトレーニングすることにより、いくつかのベンチマーク異常検出タスクで最先端のパフォーマンスを実現し、合成データによって実現された重要な改善点を浮き彫りにした。
関連論文リスト
- Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior [17.499560292835]
異常検出は、期待通りに振る舞わない例を特定するタスクである。
合成異常は品質が悪いかもしれない。
補助異常の品質を定量化する既存の方法はない。
論文 参考訳(メタデータ) (2024-05-22T14:43:29Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection [26.08881235151695]
オープンセット型教師付き異常検出(OSAD)は、トレーニング中に見られたいくつかの異常クラスのサンプルを利用して、見えない異常を検出することを目的としている。
異種不均一分布の多様集合をシミュレートする新しいアプローチ,すなわちAHL(Anomaly Heterogeneity Learning)を導入する。
AHL can 1) は, 目に見える異常や見えない異常の検出において, 最先端のOSADモデルを大幅に強化し, 2) 新たな領域の異常を効果的に一般化することを示した。
論文 参考訳(メタデータ) (2023-10-19T14:47:11Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
そこで本稿では,SaliencyCutという新たなデータ拡張手法を提案する。
次に、各サンプルから微細な異常特徴を抽出し評価するために、異常学習ヘッドにパッチワイド残余モジュールを新規に設計する。
論文 参考訳(メタデータ) (2023-06-14T08:55:36Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
本稿では,再構成の多様性を高めるため,DMAD(Diversity-Measurable Anomaly Detection)フレームワークを提案する。
PDMは基本的に、変形を埋め込みから分離し、最終的な異常スコアをより信頼性を高める。
論文 参考訳(メタデータ) (2023-03-09T05:52:42Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
ラベル付き異常な例は、多くの現実世界のアプリケーションでよく見られる。
これらの異常例は、アプリケーション固有の異常について貴重な知識を提供する。
トレーニング中に見られる異常は、可能なあらゆる種類の異常を説明できないことが多い。
本稿では,オープンセット型教師付き異常検出に取り組む。
論文 参考訳(メタデータ) (2022-03-28T05:21:37Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。