Unseen Visual Anomaly Generation
- URL: http://arxiv.org/abs/2406.01078v2
- Date: Wed, 11 Dec 2024 12:00:36 GMT
- Title: Unseen Visual Anomaly Generation
- Authors: Han Sun, Yunkang Cao, Hao Dong, Olga Fink,
- Abstract summary: Anomaly Anything (AnomalyAny) is a novel framework that generates diverse and realistic unseen anomalies.
By conditioning on a single normal sample during test time, AnomalyAny is able to generate unseen anomalies for arbitrary object types with text descriptions.
- Score: 13.456240733175767
- License:
- Abstract: Visual anomaly detection (AD) presents significant challenges due to the scarcity of anomalous data samples. While numerous works have been proposed to synthesize anomalous samples, these synthetic anomalies often lack authenticity or require extensive training data, limiting their applicability in real-world scenarios. In this work, we propose Anomaly Anything (AnomalyAny), a novel framework that leverages Stable Diffusion (SD)'s image generation capabilities to generate diverse and realistic unseen anomalies. By conditioning on a single normal sample during test time, AnomalyAny is able to generate unseen anomalies for arbitrary object types with text descriptions. Within AnomalyAny, we propose attention-guided anomaly optimization to direct SD attention on generating hard anomaly concepts. Additionally, we introduce prompt-guided anomaly refinement, incorporating detailed descriptions to further improve the generation quality. Extensive experiments on MVTec AD and VisA datasets demonstrate AnomalyAny's ability in generating high-quality unseen anomalies and its effectiveness in enhancing downstream AD performance.
Related papers
- Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior [17.499560292835]
Anomaly detection is the task of identifying examples that do not behave as expected.
Synthetic anomalies may be of poor quality.
No existing methods quantify the quality of auxiliary anomalies.
arXiv Detail & Related papers (2024-05-22T14:43:29Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection [26.08881235151695]
Open-set supervised anomaly detection (OSAD) aims at utilizing a few samples of anomaly classes seen during training to detect unseen anomalies.
We introduce a novel approach, namely Anomaly Heterogeneity Learning (AHL), that simulates a diverse set of heterogeneous anomaly distributions.
We show that AHL can 1) substantially enhance different state-of-the-art OSAD models in detecting seen and unseen anomalies, and 2) effectively generalize to unseen anomalies in new domains.
arXiv Detail & Related papers (2023-10-19T14:47:11Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.