論文の概要: The Danger Within: Insider Threat Modeling Using Business Process Models
- arxiv url: http://arxiv.org/abs/2406.01135v1
- Date: Mon, 3 Jun 2024 09:26:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:48:31.619387
- Title: The Danger Within: Insider Threat Modeling Using Business Process Models
- Title(参考訳): 内部の危険 - ビジネスプロセスモデルを用いたインサイダー脅威モデリング
- Authors: Jan von der Assen, Jasmin Hochuli, Thomas Grübl, Burkhard Stiller,
- Abstract要約: 本稿では、BPMN(Business Process Modeling and Notation)を利用した新たなインサイダー脅威知識ベースと脅威モデリングアプリケーションを開発する。
その結果は、アノテーションなしでもBPMNダイアグラムを利用して組織内の脅威を自動的に識別できることを示している。
- 参考スコア(独自算出の注目度): 0.259990372084357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Threat modeling has been successfully applied to model technical threats within information systems. However, a lack of methods focusing on non-technical assets and their representation can be observed in theory and practice. Following the voices of industry practitioners, this paper explored how to model insider threats based on business process models. Hence, this study developed a novel insider threat knowledge base and a threat modeling application that leverages Business Process Modeling and Notation (BPMN). Finally, to understand how well the theoretic knowledge and its prototype translate into practice, the study conducted a real-world case study of an IT provider's business process and an experimental deployment for a real voting process. The results indicate that even without annotation, BPMN diagrams can be leveraged to automatically identify insider threats in an organization.
- Abstract(参考訳): 脅威モデリングは、情報システム内の技術的脅威のモデル化に成功している。
しかし、非技術資産とその表現に焦点を当てた手法の欠如は理論や実践において観察できる。
業界実践者の声に続き、ビジネスプロセスモデルに基づいてインサイダー脅威をモデル化する方法を考察した。
そこで本研究では、BPMN(Business Process Modeling and Notation)を活用した、新たなインサイダー脅威知識ベースと脅威モデリングアプリケーションを開発した。
最後に、理論的な知識とそのプロトタイプがいかに実践されるかを理解するため、本研究では、ITプロバイダのビジネスプロセスと、実際の投票プロセスのための実験的なデプロイの実際のケーススタディを実施した。
その結果は、アノテーションなしでもBPMNダイアグラムを利用して組織内の脅威を自動的に識別できることを示している。
関連論文リスト
- AsIf: Asset Interface Analysis of Industrial Automation Devices [1.3216177247621483]
産業制御システムは、通信標準やプロトコルを含むITソリューションをますます採用している。
これらのシステムがより分散化され相互接続されるようになると、セキュリティ対策の強化に対する重要なニーズが生じる。
脅威モデリングは伝統的に、ドメインとセキュリティの専門家を含む構造化ブレインストーミングセッションで行われます。
本稿では,特に物理的脅威に着目した産業システムにおける資産分析手法を提案する。
論文 参考訳(メタデータ) (2024-09-26T07:19:15Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
言語モデル(LM)は、潜在的に著作権のある資料を含む様々なデータに対する広範な訓練からその能力を引き出す。
本稿では,LMの著作権削除の可能性と副作用を初めて評価する。
システムプロンプトの追加、デコード時間フィルタリングの介入、未学習アプローチなど、いくつかの戦略を検討する。
論文 参考訳(メタデータ) (2024-06-26T18:09:46Z) - Science based AI model certification for new operational environments with application in traffic state estimation [1.2186759689780324]
さまざまなエンジニアリング領域における人工知能(AI)の役割の拡大は、AIモデルを新たな運用環境にデプロイする際の課題を強調している。
本稿では,新しい運用環境における事前学習型データ駆動モデルの適用可能性を評価するための,科学ベースの認証手法を提案する。
論文 参考訳(メタデータ) (2024-05-13T16:28:00Z) - Science based AI model certification for untrained operational environments with application in traffic state estimation [1.2186759689780324]
さまざまなエンジニアリング領域における人工知能(AI)の役割の拡大は、AIモデルを新たな運用環境にデプロイする際の課題を強調している。
本稿では,未訓練の運用環境における事前学習データ駆動モデルの適用可能性を評価するための,科学ベースの認証手法を提案する。
論文 参考訳(メタデータ) (2024-03-21T03:01:25Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
本稿では、AI関連資産、脅威、対策、残留リスクの定量化のためのアプローチおよびツールであるThreatFinderAIを提案する。
このアプローチの実用性を評価するため、参加者はAIベースのヘルスケアプラットフォームのサイバーセキュリティ専門家によって開発された脅威モデルを再現するよう命じられた。
全体として、ソリューションのユーザビリティはよく認識され、脅威の識別とリスクの議論を効果的にサポートする。
論文 参考訳(メタデータ) (2024-03-11T08:40:01Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
我々は要約作業に焦点をあて、会員推測(MI)攻撃について調査する。
テキストの類似性や文書修正に対するモデルの抵抗をMI信号として活用する。
我々は、MI攻撃から保護するための要約モデルの訓練と、プライバシとユーティリティの本質的にのトレードオフについて議論する。
論文 参考訳(メタデータ) (2023-10-20T05:44:39Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
本稿ではメタラーニングと逆学習の技法を活用した自己破壊モデルの学習アルゴリズムを提案する。
小規模な実験では、MLACは、BERTスタイルのモデルが性別識別を行うために再目的化されることをほとんど防ぐことができることを示す。
論文 参考訳(メタデータ) (2022-11-27T21:43:45Z) - CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated
Learning [77.27443885999404]
Federated Learning(FL)は、分散環境で機械学習モデルをトレーニングするための設定である。
本稿では,訓練ラウンドの経験的プライバシを評価するために,強敵による慎重なサンプル作成手法であるCANIFEを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:30:16Z) - AI Trust in business processes: The need for process-aware explanations [11.161025675113208]
ビジネスプロセス管理(BPM)の文献は、機械学習ソリューションに富んでいます。
NLPドメインを含むディープラーニングモデルは、プロセス予測に応用されている。
私たちは、BPMにAIモデルが採用されていない大きな理由は、ビジネスユーザーがリスクに逆らってAIモデルを暗黙的に信頼していないことであると断言しています。
論文 参考訳(メタデータ) (2020-01-21T13:51:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。