論文の概要: AGALE: A Graph-Aware Continual Learning Evaluation Framework
- arxiv url: http://arxiv.org/abs/2406.01229v2
- Date: Fri, 7 Jun 2024 15:50:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 12:53:12.860063
- Title: AGALE: A Graph-Aware Continual Learning Evaluation Framework
- Title(参考訳): AGALE: グラフ対応連続学習評価フレームワーク
- Authors: Tianqi Zhao, Alan Hanjalic, Megha Khosla,
- Abstract要約: シングルラベルノードとマルチラベルノードの両方に対応可能なグラフ認識評価フレームワークを開発した。
特に、新しいインクリメンタル設定を定義し、データセットに適したアルゴリズムを考案する。
理論的にアガレを解析し、比較手法の性能におけるホモフィリーの役割について新たな知見を提供する。
- 参考スコア(独自算出の注目度): 7.892731722253387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, continual learning (CL) techniques have made significant progress in learning from streaming data while preserving knowledge across sequential tasks, particularly in the realm of euclidean data. To foster fair evaluation and recognize challenges in CL settings, several evaluation frameworks have been proposed, focusing mainly on the single- and multi-label classification task on euclidean data. However, these evaluation frameworks are not trivially applicable when the input data is graph-structured, as they do not consider the topological structure inherent in graphs. Existing continual graph learning (CGL) evaluation frameworks have predominantly focussed on single-label scenarios in the node classification (NC) task. This focus has overlooked the complexities of multi-label scenarios, where nodes may exhibit affiliations with multiple labels, simultaneously participating in multiple tasks. We develop a graph-aware evaluation (\agale) framework that accommodates both single-labeled and multi-labeled nodes, addressing the limitations of previous evaluation frameworks. In particular, we define new incremental settings and devise data partitioning algorithms tailored to CGL datasets. We perform extensive experiments comparing methods from the domains of continual learning, continual graph learning, and dynamic graph learning (DGL). We theoretically analyze \agale and provide new insights about the role of homophily in the performance of compared methods. We release our framework at https://github.com/Tianqi-py/AGALE.
- Abstract(参考訳): 近年、連続学習(CL)技術は、連続的なタスク、特にユークリッドデータの領域における知識を維持しながら、ストリーミングデータからの学習において大きな進歩を遂げている。
CL設定における公平な評価の促進と課題の認識を目的として,ユークリッドデータの単一・複数ラベル分類タスクを中心に,いくつかの評価フレームワークが提案されている。
しかし、これらの評価フレームワークは、グラフに固有のトポロジ構造を考慮しないため、入力データがグラフ構造である場合、簡単には適用できない。
既存の連続グラフ学習(CGL)評価フレームワークは、ノード分類(NC)タスクにおける単一ラベルシナリオに重点を置いている。
この焦点はマルチラベルシナリオの複雑さを見落としており、ノードは複数のラベルとのアフィリエイトを示し、同時に複数のタスクに参加することができる。
単一ラベルノードと複数ラベルノードの両方に対応可能なグラフ対応評価フレームワーク(\agale)を開発し,従来の評価フレームワークの限界に対処する。
特に、新たなインクリメンタル設定を定義し、CGLデータセットに適したデータパーティショニングアルゴリズムを考案する。
本研究では,連続学習,連続グラフ学習,動的グラフ学習(DGL)の各分野の手法の比較実験を行った。
理論的には \agale を解析し、比較手法の性能におけるホモフィリーの役割に関する新たな知見を提供する。
私たちはフレームワークをhttps://github.com/Tianqi-py/AGALEでリリースします。
関連論文リスト
- Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Continual Learning on Graphs: Challenges, Solutions, and Opportunities [72.7886669278433]
本稿では,既存の連続グラフ学習(CGL)アルゴリズムの総合的なレビューを行う。
従来の連続学習手法と比較し,従来の連続学習手法の適用性を分析した。
アクセス可能なアルゴリズムの包括的なリストを含む、最新のリポジトリを維持します。
論文 参考訳(メタデータ) (2024-02-18T12:24:45Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
冗長フリーグラフクラスタリング(R$2$FGC)という,自己教師付き深層グラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性レベルと構造レベルの関係情報を抽出する。
この実験は,R$2$FGCが最先端のベースラインよりも優れていることを示すために,広く使用されているベンチマークデータセット上で実施されている。
論文 参考訳(メタデータ) (2023-09-09T06:18:50Z) - KMF: Knowledge-Aware Multi-Faceted Representation Learning for Zero-Shot
Node Classification [75.95647590619929]
Zero-Shot Node Classification (ZNC)は、グラフデータ分析において、新しく重要なタスクである。
ラベルセマンティクスの豊かさを向上する知識認識型多面的フレームワーク(KMF)を提案する。
ノード情報集約によるプロトタイプドリフトの問題を軽減するために,新しい幾何学的制約を開発した。
論文 参考訳(メタデータ) (2023-08-15T02:38:08Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
近年,グラフニューラルネットワーク(GNN)が注目されている。
近年の研究では、GNNはグラフの複雑な基盤構造に弱いことが示されている。
半教師付き分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T06:17:11Z) - CGC: Contrastive Graph Clustering for Community Detection and Tracking [33.48636823444052]
グラフクラスタリングのための新しいエンドツーエンドフレームワークであるCGCを開発した。
CGCは、対照的なグラフ学習フレームワークでノードの埋め込みとクラスタ割り当てを学習する。
時間進化データに対してCGCを拡張し、時間的グラフクラスタリングを漸進的な学習方式で行う。
論文 参考訳(メタデータ) (2022-04-05T17:34:47Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
自己教師付き全グラフ表現学習のためのローカル・インスタンスとグローバル・セマンティック・ラーニング(GraphLoG)という統合フレームワークを提案する。
GraphLoGは、局所的な類似点の保存に加えて、グローバルなセマンティッククラスタをキャプチャする階層的なプロトタイプも導入している。
モデル学習のための効率的なオンライン予測最大化(EM)アルゴリズムがさらに開発された。
論文 参考訳(メタデータ) (2021-06-08T05:25:38Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification [25.883839335786025]
本稿では,グラフデータへの高速適応にGNNをベースとしたグラフメタラーナを用いた新しいフレームワークを提案する。
我々のフレームワークは、ベースラインと比較して、いくつかのショットグラフ分類タスクに対して最先端の結果を得る。
論文 参考訳(メタデータ) (2020-03-18T14:38:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。