論文の概要: Expected Grad-CAM: Towards gradient faithfulness
- arxiv url: http://arxiv.org/abs/2406.01274v2
- Date: Tue, 25 Jun 2024 18:10:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 18:16:00.794831
- Title: Expected Grad-CAM: Towards gradient faithfulness
- Title(参考訳): グラッドCAM期待:勾配忠実化に向けて
- Authors: Vincenzo Buono, Peyman Sheikholharam Mashhadi, Mahmoud Rahat, Prayag Tiwari, Stefan Byttner,
- Abstract要約: 勾配重み付きCAMアプローチは依然としてバニラ勾配に依存している。
本研究は飽和度と感度問題に対処する勾配重み付きCAM増強法を提案する。
- 参考スコア(独自算出の注目度): 7.2203673761998495
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Although input-gradients techniques have evolved to mitigate and tackle the challenges associated with gradients, modern gradient-weighted CAM approaches still rely on vanilla gradients, which are inherently susceptible to the saturation phenomena. Despite recent enhancements have incorporated counterfactual gradient strategies as a mitigating measure, these local explanation techniques still exhibit a lack of sensitivity to their baseline parameter. Our work proposes a gradient-weighted CAM augmentation that tackles both the saturation and sensitivity problem by reshaping the gradient computation, incorporating two well-established and provably approaches: Expected Gradients and kernel smoothing. By revisiting the original formulation as the smoothed expectation of the perturbed integrated gradients, one can concurrently construct more faithful, localized and robust explanations which minimize infidelity. Through fine modulation of the perturbation distribution it is possible to regulate the complexity characteristic of the explanation, selectively discriminating stable features. Our technique, Expected Grad-CAM, differently from recent works, exclusively optimizes the gradient computation, purposefully designed as an enhanced substitute of the foundational Grad-CAM algorithm and any method built therefrom. Quantitative and qualitative evaluations have been conducted to assess the effectiveness of our method.
- Abstract(参考訳): インプット・グラディエント・テクニックは勾配に関する課題を緩和し対処するために進化してきたが、現代の勾配重み付けCAMアプローチは、飽和現象に本質的に影響を受けやすいバニラ勾配に依存している。
近年の強化は、緩和策として反ファクト的勾配戦略を取り入れているが、これらの局所的な説明手法は、その基準パラメータに対する感度の欠如をまだ示している。
本研究は,勾配計算を再構成することで,飽和度と感度の両問題に対処する勾配重み付きCAM拡張法を提案する。
元の定式化を摂動積分勾配の滑らかな期待として再考することにより、不完全性を最小化するより忠実で局所的で堅牢な説明を同時に構築することができる。
摂動分布の微調整により、説明の複雑さ特性を制御し、安定な特徴を選択的に識別することができる。
近年のGrad-CAMとは違って,本手法は,基礎的なGrad-CAMアルゴリズムの代替として設計された勾配計算を最適化する。
本手法の有効性を評価するため, 定量的, 質的な評価を行った。
関連論文リスト
- Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
パラメータ・サーバ・フレームワークにおける圧縮勾配通信を用いた分散勾配降下(SGD)のための新しいアルゴリズムを提案する。
平坦な1ビット勾配勾配勾配法(FO-SGD)は2つの単純なアルゴリズムの考え方に依存している。
論文 参考訳(メタデータ) (2024-05-17T21:17:27Z) - A Learning Paradigm for Interpretable Gradients [9.074325843851726]
本稿では,解釈可能性向上のための新たな学習手法を提案する。
得られた勾配は定性的にノイズが少なく、異なるネットワークの解釈可能性特性を定量的に改善する。
論文 参考訳(メタデータ) (2024-04-23T13:32:29Z) - Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
via Reparameterisation and Smoothing [1.6114012813668932]
微分不可能な関数を断片的に定義するための単純なフレームワークを導入し,スムース化を得るための体系的なアプローチを提案する。
我々の主な貢献は SGD の新たな変種 Diagonalisation Gradient Descent であり、滑らかな近似の精度を徐々に向上させる。
我々のアプローチは単純で高速で安定であり、作業正規化分散の桁数削減を実現している。
論文 参考訳(メタデータ) (2024-02-19T00:43:22Z) - Gradient Correction beyond Gradient Descent [63.33439072360198]
勾配補正は明らかに、ニューラルネットワークのトレーニングにおいて、最も重要な側面である。
勾配補正を行うためのフレームワーク(textbfGCGD)を導入する。
実験結果から, 勾配補正フレームワークは, トレーニングエポックスを$sim$20%削減し, ネットワーク性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-03-16T01:42:25Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
本稿では,勾配ベクトル場の力学に適応するメタ学習アルゴリズムであるContinuous Meta-Learning(COMLN)を紹介する。
学習プロセスをODEとして扱うことは、軌跡の長さが現在連続しているという顕著な利点を提供する。
本稿では,実行時とメモリ使用時の効率を実証的に示すとともに,いくつかの画像分類問題に対して有効性を示す。
論文 参考訳(メタデータ) (2022-03-02T22:35:58Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - SSGD: A safe and efficient method of gradient descent [0.5099811144731619]
勾配降下法は様々な最適化問題を解く上で重要な役割を果たしている。
超勾配降下法による勾配長の隠蔽によるパラメータの更新
我々のアルゴリズムは勾配に対する攻撃に対して防御できる。
論文 参考訳(メタデータ) (2020-12-03T17:09:20Z) - Improved Analysis of Clipping Algorithms for Non-convex Optimization [19.507750439784605]
最近、citetzhang 2019gradient show that clipped (stochastic) Gradient Descent (GD) converges faster than vanilla GD/SGD。
実験は、深層学習におけるクリッピングに基づく手法の優位性を確認する。
論文 参考訳(メタデータ) (2020-10-05T14:36:59Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。