論文の概要: When Can LLMs Actually Correct Their Own Mistakes? A Critical Survey of Self-Correction of LLMs
- arxiv url: http://arxiv.org/abs/2406.01297v3
- Date: Tue, 03 Dec 2024 19:14:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:05:21.391700
- Title: When Can LLMs Actually Correct Their Own Mistakes? A Critical Survey of Self-Correction of LLMs
- Title(参考訳): LLMの誤りはいつ修正できるか? LLMの自己補正の批判的調査
- Authors: Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, Rui Zhang,
- Abstract要約: 自己補正(Self-correction)は、LLMを用いて推論中に応答を精製することで、大きな言語モデル(LLM)からの応答を改善するアプローチである。
これまでの作業では,自己評価や外部からのフィードバックなど,さまざまなフィードバック源を用いたさまざまな自己補正フレームワークが提案されていた。
我々は幅広い論文を批判的に調査し、自己補正を成功させるために必要な条件について議論する。
- 参考スコア(独自算出の注目度): 29.295135832861522
- License:
- Abstract: Self-correction is an approach to improving responses from large language models (LLMs) by refining the responses using LLMs during inference. Prior work has proposed various self-correction frameworks using different sources of feedback, including self-evaluation and external feedback. However, there is still no consensus on the question of when LLMs can correct their own mistakes, as recent studies also report negative results. In this work, we critically survey broad papers and discuss the conditions required for successful self-correction. We first find that prior studies often do not define their research questions in detail and involve impractical frameworks or unfair evaluations that over-evaluate self-correction. To tackle these issues, we categorize research questions in self-correction research and provide a checklist for designing appropriate experiments. Our critical survey based on the newly categorized research questions shows that (1) no prior work demonstrates successful self-correction with feedback from prompted LLMs, except for studies in tasks that are exceptionally suited for self-correction, (2) self-correction works well in tasks that can use reliable external feedback, and (3) large-scale fine-tuning enables self-correction.
- Abstract(参考訳): 自己補正(Self-correction)は、LLMを用いて推論中に応答を精製することで、大きな言語モデル(LLM)からの応答を改善するアプローチである。
これまでの作業では,自己評価や外部からのフィードバックなど,さまざまなフィードバック源を用いたさまざまな自己補正フレームワークが提案されていた。
しかし、最近の研究では否定的な結果も報告されているので、LLMが自身の誤りをいつ修正できるかについては、まだ意見が一致していない。
本研究では,幅広い論文を批判的に調査し,自己補正を成功させるために必要な条件について議論する。
まず, 先行研究では, 自己訂正を過度に評価する非現実的な枠組みや不公平な評価を, 詳細に定義しないことが多い。
これらの課題に対処するため、自己補正研究における研究課題を分類し、適切な実験を設計するためのチェックリストを提供する。
本研究は,(1)先行研究がLPMからのフィードバックによる自己補正を成功させていないこと,(2)信頼性の高い外部フィードバックを活用可能なタスクにおいて,(2)自己補正が有効であること,(3)大規模微調整が自己補正を可能にすること,の2点を考察した。
関連論文リスト
- ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE)は、LLMが自己検証を通じてアウトプットを自己修正できる効率的なフレームワークである。
様々な推論タスクに関する実験により、ReVISEは効率的な自己補正を実現し、推論性能を大幅に向上することを示した。
論文 参考訳(メタデータ) (2025-02-20T13:50:02Z) - Fostering Appropriate Reliance on Large Language Models: The Role of Explanations, Sources, and Inconsistencies [66.30619782227173]
大規模言語モデル(LLMs)は、流動的で説得力のある誤った応答を生成することができる。
ユーザの信頼を形作るLCM応答のいくつかの特徴を同定する。
説明は正しい応答と誤応答の両方に依存することが判明した。
情報源が提供された場合や説明が矛盾している場合の誤った応答への依存度は低い。
論文 参考訳(メタデータ) (2025-02-12T16:35:41Z) - Understanding the Dark Side of LLMs' Intrinsic Self-Correction [55.51468462722138]
LLMの応答を改善するために,本質的な自己補正法が提案された。
近年の研究では、LLMの内在的な自己補正は、フィードバックのプロンプトとして、オラクルラベルなしで失敗することが示されている。
内在的な自己補正は、中途半端な回答と最終回答の両方を LLM が揺らぎ、単純な事実的質問に対する素早い偏見をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-12-19T15:39:31Z) - Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks [43.96835245022083]
モデルにアウトプットを洗練させる自己補正は、この問題に対する有望な解決策である。
本研究では,視覚言語モデルの推論および微調整段階における自己補正能力について検討した。
論文 参考訳(メタデータ) (2024-10-05T06:28:54Z) - Large Language Models have Intrinsic Self-Correction Ability [18.79203446847577]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおける例外的な能力に対して大きな注目を集めている。
LLMのパフォーマンスを改善するための有望な解決策の1つは、LLMに世代ごとの回答の修正を求めることである。
内在的な自己補正は、外部知識を活用できないため、有望な方向と考えられる。
論文 参考訳(メタデータ) (2024-06-21T22:29:40Z) - A Theoretical Understanding of Self-Correction through In-context Alignment [51.622068973630796]
大規模言語モデル(LLM)は自己補正によって純粋に能力を向上させることができる。
LLMが比較的正確な自己評価を報酬として与える場合、文脈内応答を補充できることを示す。
これらの知見に触発されて,LLMジェイルブレイクに対する防御などの自己補正の応用についても解説した。
論文 参考訳(メタデータ) (2024-05-28T22:33:02Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
大規模言語モデル(LLM)の推論性能を高めるための有望なソリューションとして自己補正が登場した。
この研究は、小さい(=13B)言語モデル(LM)が、より強いLMから最小の入力で推論タスクを自己補正できるかどうかを考察する。
論文 参考訳(メタデータ) (2024-04-26T03:41:28Z) - You don't need a personality test to know these models are unreliable: Assessing the Reliability of Large Language Models on Psychometric Instruments [37.03210795084276]
本稿では, 大規模言語モデルが応答を一貫した, 頑健な方法で引き起こすかどうかを考察する。
17種類のLDM実験により,単純な摂動でさえモデルの問合せ能力を大幅に低下させることが判明した。
その結果,現在広く普及しているプロンプトは,モデル知覚を正確にかつ確実に捉えるには不十分であることが示唆された。
論文 参考訳(メタデータ) (2023-11-16T09:50:53Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
LLM(Large Language Models)は、非並列テキスト生成機能を備えた画期的な技術として登場した。
生成したコンテンツの正確性と適切性に関する懸念が続いている。
現代の方法論である自己補正がこれらの問題に対する対策として提案されている。
論文 参考訳(メタデータ) (2023-10-03T04:56:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。