論文の概要: Transferring Domain Knowledge with (X)AI-Based Learning Systems
- arxiv url: http://arxiv.org/abs/2406.01329v1
- Date: Mon, 3 Jun 2024 13:56:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:59:31.655682
- Title: Transferring Domain Knowledge with (X)AI-Based Learning Systems
- Title(参考訳): X)AIに基づく学習システムによるドメイン知識の伝達
- Authors: Philipp Spitzer, Niklas Kühl, Marc Goutier, Manuel Kaschura, Gerhard Satzger,
- Abstract要約: 説明可能な人工知能(XAI)は、従来、ブラックボックス人工知能システムを解釈するために用いられてきた。
X)AIシステムは、専門家の過去の判断に基づいて訓練され、実例と説明を提供することで初心者を教えるために使用される。
我々は,(X)AIに基づく学習システムが初心者の学習を誘導し,その認知スタイルが中等学習であることを示す。
- 参考スコア(独自算出の注目度): 3.0059120458540383
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In numerous high-stakes domains, training novices via conventional learning systems does not suffice. To impart tacit knowledge, experts' hands-on guidance is imperative. However, training novices by experts is costly and time-consuming, increasing the need for alternatives. Explainable artificial intelligence (XAI) has conventionally been used to make black-box artificial intelligence systems interpretable. In this work, we utilize XAI as an alternative: An (X)AI system is trained on experts' past decisions and is then employed to teach novices by providing examples coupled with explanations. In a study with 249 participants, we measure the effectiveness of such an approach for a classification task. We show that (X)AI-based learning systems are able to induce learning in novices and that their cognitive styles moderate learning. Thus, we take the first steps to reveal the impact of XAI on human learning and point AI developers to future options to tailor the design of (X)AI-based learning systems.
- Abstract(参考訳): 多くのハイテイクドメインでは、従来の学習システムによる初心者のトレーニングは十分ではない。
暗黙の知識を与えるためには、専門家の手引き指導が不可欠である。
しかし、専門家による初級生のトレーニングは費用がかかり時間もかかり、代替手段の必要性が高まる。
説明可能な人工知能(XAI)は、従来、ブラックボックス人工知能システムを解釈するために用いられてきた。
本研究では,XAIを代替として活用する: (X)AIシステムは,専門家の過去の判断に基づいて訓練され,説明と組み合わせた事例を提供することで初心者の教育に使用される。
本研究では,249名の参加者を対象に,分類課題に対するアプローチの有効性を計測した。
我々は,(X)AIに基づく学習システムが初心者の学習を誘導し,その認知スタイルが中等学習であることを示す。
このようにして、XAIが人間の学習に与える影響を明らかにする第一歩を踏み出し、(X)AIベースの学習システムの設計をカスタマイズする将来の選択肢にAI開発者を向けます。
関連論文リスト
- Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
人工知能(AGI)は、人工知能(AI)研究においてしばらくの間、明白な目標であった。
AGIは、人間のように、新しい問題領域にさらされ、それを学び、推論プロセスを使って意思決定する能力を持つでしょう。
本稿では,AGIの製作に向けての歩みについて述べる。
論文 参考訳(メタデータ) (2024-06-17T07:21:44Z) - Towards a general framework for improving the performance of classifiers using XAI methods [0.0]
本稿では,XAI手法を用いた事前学習型ディープラーニング(DL)分類器の性能向上のためのフレームワークを提案する。
オートエンコーダベースおよびエンコーダデコーダベースと呼び、それらの重要な側面について議論する。
論文 参考訳(メタデータ) (2024-03-15T15:04:20Z) - XAI for All: Can Large Language Models Simplify Explainable AI? [0.0699049312989311]
x-[plAIn]"は、カスタムのLarge Language Modelを通じて、XAIをより広く利用できるようにする新しいアプローチである。
我々の目標は、様々なXAI手法の明確で簡潔な要約を生成できるモデルを設計することであった。
使用事例調査の結果から,本モデルは理解し易く,観衆特有の説明を提供するのに有効であることが示された。
論文 参考訳(メタデータ) (2024-01-23T21:47:12Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
XAIに対する個人化アプローチとユーザ中心アプローチの数は、近年急速に増加している。
ユーザ中心のXAIアプローチがユーザとシステム間のインタラクションに肯定的な影響を与えることが明らかとなった。
我々は,XAIシステムの良否を客観的かつ定量的に評価するための評価課題を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:49:39Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。