論文の概要: BELLS: A Framework Towards Future Proof Benchmarks for the Evaluation of LLM Safeguards
- arxiv url: http://arxiv.org/abs/2406.01364v1
- Date: Mon, 3 Jun 2024 14:32:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:49:47.404793
- Title: BELLS: A Framework Towards Future Proof Benchmarks for the Evaluation of LLM Safeguards
- Title(参考訳): BELLS: LLMセーフガードの評価のための将来のベンチマークに向けたフレームワーク
- Authors: Diego Dorn, Alexandre Variengien, Charbel-Raphaël Segerie, Vincent Corruble,
- Abstract要約: LLMセーフガード評価ベンチマーク(BELLS)について紹介する。
BELLSは構造化されたテストのコレクションで、確立された障害テスト、新しい障害テスト、次世代アーキテクチャテストの3つのカテゴリに分けられる。
私たちは、データセットのインタラクティブな可視化とともに、MACHIAVELLI環境を使用して、最初の次世代アーキテクチャテストを実装し、共有します。
- 参考スコア(独自算出の注目度): 43.86118338226387
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Input-output safeguards are used to detect anomalies in the traces produced by Large Language Models (LLMs) systems. These detectors are at the core of diverse safety-critical applications such as real-time monitoring, offline evaluation of traces, and content moderation. However, there is no widely recognized methodology to evaluate them. To fill this gap, we introduce the Benchmarks for the Evaluation of LLM Safeguards (BELLS), a structured collection of tests, organized into three categories: (1) established failure tests, based on already-existing benchmarks for well-defined failure modes, aiming to compare the performance of current input-output safeguards; (2) emerging failure tests, to measure generalization to never-seen-before failure modes and encourage the development of more general safeguards; (3) next-gen architecture tests, for more complex scaffolding (such as LLM-agents and multi-agent systems), aiming to foster the development of safeguards that could adapt to future applications for which no safeguard currently exists. Furthermore, we implement and share the first next-gen architecture test, using the MACHIAVELLI environment, along with an interactive visualization of the dataset.
- Abstract(参考訳): 入力出力セーフガードは、LLM(Large Language Models)システムによって生成されたトレースの異常を検出するために使用される。
これらの検出器は、リアルタイム監視、トレースのオフライン評価、コンテンツモデレーションなど、多様な安全クリティカルなアプリケーションの中核にある。
しかし、評価する方法論は広く認知されていない。
このギャップを埋めるために,(1) 既定の既定の障害モードのベンチマークに基づいて,既存のインプットアウトプットセーフガードのパフォーマンスを比較することを目的とした,確立された障害テスト,(2) 未確認の障害モードの一般化を計測し,より一般的なセーフガードの開発を促進すること,(3) より複雑なスキャフォールディング(LLMエージェントやマルチエージェントシステムなど)のための次世代アーキテクチャテスト, (3) 安全ガードが存在しない将来のアプリケーションに適応可能な安全ガードの開発を促進すること,の3つのカテゴリに編成された,LLMセーフガードの評価のためのベンチマーク(BELLS)を紹介した。
さらに、MACHIAVELLI環境を使用して、最初の次世代アーキテクチャテストを実装し、共有し、データセットをインタラクティブに可視化する。
関連論文リスト
- SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
本研究では,大規模言語モデル(LLM)の安全性を様々なタスクやプロンプトタイプにまたがる一般化を評価するための新しいベンチマークを開発する。
このベンチマークは、生成的および識別的評価タスクを統合し、LLMの安全性に対する迅速なエンジニアリングとジェイルブレイクの影響を調べるための拡張データを含む。
評価の結果,ほとんどのLDMは生成的タスクよりも差別的タスクが悪く,プロンプトに非常に敏感であり,安全アライメントの一般化が不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-29T11:47:01Z) - VERA: Validation and Evaluation of Retrieval-Augmented Systems [5.709401805125129]
VERAは、大規模言語モデル(LLM)からの出力の透明性と信頼性を高めるために設計されたフレームワークである。
VERAが意思決定プロセスを強化し、AIアプリケーションへの信頼を高める方法を示す。
論文 参考訳(メタデータ) (2024-08-16T21:59:59Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models [41.772263447213234]
大規模言語モデル(LLM)は膨大な量のデータに基づいて訓練されることが知られており、意図的または故意によく使われるベンチマークのデータを含むことがある。
このインクルージョンは、モデルリーダーボードの不正な高いスコアにつながるが、現実のアプリケーションではパフォーマンスに失望する。
LLMのベンチマーク汚染を効果的に検出するPaired Confidence Significance TestingであるPaCoSTを紹介する。
論文 参考訳(メタデータ) (2024-06-26T13:12:40Z) - Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations [76.19419888353586]
大規模言語モデル(LLM)は、不誠実なアウトプットからバイアスや有害な世代に至るまで、さまざまなリスクを受けやすい。
我々は,様々な害のラベルを提供するコンパクトで容易に構築できる分類モデルである,検出器のライブラリを作成し,展開する取り組みについて述べる。
論文 参考訳(メタデータ) (2024-03-09T21:07:16Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection [55.70982767084996]
ディープフェイク検出の分野で見落とされがちな課題は、標準化され、統一され、包括的なベンチマークがないことである。
DeepfakeBenchと呼ばれる,3つの重要なコントリビューションを提供するディープフェイク検出のための,最初の包括的なベンチマークを提示する。
DeepfakeBenchには15の最先端検出方法、9CLデータセット、一連のDeepfake検出評価プロトコルと分析ツール、包括的な評価ツールが含まれている。
論文 参考訳(メタデータ) (2023-07-04T01:34:41Z) - Unifying Evaluation of Machine Learning Safety Monitors [0.0]
ランタイムモニタは、予測エラーを検出し、オペレーション中にシステムを安全な状態に保つために開発された。
本稿では、モニタの安全性(安全利得)と使用後の残りの安全ギャップ(残留ハザード)の3つの統合安全指向指標を紹介する。
3つのユースケース(分類、ドローン着陸、自律走行)は、提案されたメトリクスの観点から、文献からのメトリクスをどのように表現できるかを示すために使用される。
論文 参考訳(メタデータ) (2022-08-31T07:17:42Z) - Benchmarking Safety Monitors for Image Classifiers with Machine Learning [0.0]
高精度機械学習(ML)画像分類器は、動作時に失敗しないことを保証できない。
安全モニタなどのフォールトトレランス機構の使用は,システムを安全な状態に保つ上で有望な方向である。
本稿では,ML画像分類器のベンチマークを行うためのベースラインフレームワークを確立することを目的とする。
論文 参考訳(メタデータ) (2021-10-04T07:52:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。