論文の概要: Extending Structural Causal Models for Use in Autonomous Embodied Systems
- arxiv url: http://arxiv.org/abs/2406.01384v1
- Date: Mon, 3 Jun 2024 14:47:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-06-05 22:39:57.244236
- Title: Extending Structural Causal Models for Use in Autonomous Embodied Systems
- Title(参考訳): 自律型身体システムにおける構造因果モデルの拡張
- Authors: Rhys Howard, Lars Kunze,
- Abstract要約: 本稿では,構造因果モデル(SCM)で構成されるモジュールベース自律運転システムについて述べる。
ひとつはSCMのコンテキストで、残りは3つの新しい変数カテゴリで、そのうち2つは関数型プログラミングモナドに基づいています。
本稿では,自律運転システムの因果的能力の応用例を示す。
- 参考スコア(独自算出の注目度): 5.309950889075669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much work has been done to develop causal reasoning techniques across a number of domains, however the utilisation of causality within autonomous systems is still in its infancy. Autonomous systems would greatly benefit from the integration of causality through the use of representations such as structural causal models (SCMs). The system would be afforded a higher level of transparency, it would enable post-hoc explanations of outcomes, and assist in the online inference of exogenous variables. These qualities are either directly beneficial to the autonomous system or a valuable step in building public trust and informing regulation. To such an end we present a case study in which we describe a module-based autonomous driving system comprised of SCMs. Approaching this task requires considerations of a number of challenges when dealing with a system of great complexity and size, that must operate for extended periods of time by itself. Here we describe these challenges, and present solutions. The first of these is SCM contexts, with the remainder being three new variable categories -- two of which are based upon functional programming monads. Finally, we conclude by presenting an example application of the causal capabilities of the autonomous driving system. In this example, we aim to attribute culpability between vehicular agents in a hypothetical road collision incident.
- Abstract(参考訳): 多くのドメインで因果推論技術を開発するために多くの研究がなされてきたが、自律システムにおける因果性の利用はまだ初期段階にある。
自律システムは、構造因果モデル(SCM)のような表現を使用することによって因果関係の統合から大きな恩恵を受ける。
このシステムには高いレベルの透明性が与えられ、結果のポストホックな説明を可能にし、外因性変数のオンライン推論を支援する。
これらの性質は、自律システムに直接的な利益をもたらすか、公的信頼の構築と規制の通知における貴重なステップとなる。
そこで本稿では,SCMからなるモジュールベース自律運転システムについて述べる。
この課題にアプローチするには、非常に複雑で大きさのシステムを扱う場合、それ自身で長期にわたって運用する必要がある、多くの課題を考慮する必要がある。
ここでは、これらの課題と、その解決策について説明する。
ひとつはSCMのコンテキストで、残りは3つの新しい変数カテゴリで、そのうち2つは関数型プログラミングモナドに基づいています。
最後に,自律運転システムの因果能力の応用例を示す。
この例では,仮想道路衝突事故における車両エージェント間の透水性について考察する。
関連論文リスト
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks [50.29356570858905]
本稿では,これらすべてのアーキテクチャの共通表現に関する原則的な調査を可能にする動的システムフレームワーク(DSF)について紹介する。
ソフトマックスアテンションと他のモデルクラスとの原理的比較を行い、ソフトマックスアテンションを近似できる理論条件について議論する。
このことは、DSFが将来のより効率的でスケーラブルな基盤モデルの体系的な開発を導く可能性を示している。
論文 参考訳(メタデータ) (2024-05-24T17:19:57Z) - Hallucination Detection in Foundation Models for Decision-Making: A Flexible Definition and Review of the State of the Art [7.072820266877787]
意思決定タスクにおける基礎モデルの現状について論じる。
我々は、モデル決定の確実性を定量化できるシステムを後退して同時に設計する必要があると主張している。
論文 参考訳(メタデータ) (2024-03-25T08:11:02Z) - Can Large Language Models Learn Independent Causal Mechanisms? [9.274428418715347]
大きな言語モデル(LLM)は、一般的でない設定や分散シフトで同じタスクで不足する。
本研究では,抽象変数と因果関係を学習する因果モデルにより,分布の変化に対するロバスト性の向上が示された。
論文 参考訳(メタデータ) (2024-02-04T23:04:02Z) - Distribution-consistency Structural Causal Models [6.276417011421679]
我々は,新しいテクスト分布-一貫性仮定を導入し,それに合わせて分布-一貫性構造因果モデル(DiscoSCM)を提案する。
モデルキャパシティの強化を具体化するために,DiscoSCM単独で実用的重要性を有する新たな因果パラメータ,一貫性のテキスト化(textitthe probability of consistency)を導入する。
論文 参考訳(メタデータ) (2024-01-29T06:46:15Z) - Targeted Reduction of Causal Models [55.11778726095353]
因果表現学習(Causal Representation Learning)は、シミュレーションで解釈可能な因果パターンを明らかにするための有望な道を提供する。
本稿では、複雑な相互作用可能なモデルを因果因子の簡潔な集合に凝縮する方法であるTCR(Targeted Causal Reduction)を紹介する。
複雑なモデルから解釈可能な高レベルな説明を生成する能力は、玩具や機械システムで実証されている。
論文 参考訳(メタデータ) (2023-11-30T15:46:22Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - EqDrive: Efficient Equivariant Motion Forecasting with Multi-Modality for Autonomous Driving [3.4679246185687544]
我々は,マルチエージェント車両運動予測のタスクにおいて,先行する同変粒子であるEqMotionと人間の予測モデルを用いる。
EqMotionを利用することで、パラメータが少なく(120万)、トレーニング時間を大幅に短縮(2時間以内)で、最先端(SOTA)のパフォーマンスを実現します。
論文 参考訳(メタデータ) (2023-10-26T16:32:34Z) - Towards Probabilistic Causal Discovery, Inference & Explanations for
Autonomous Drones in Mine Surveying Tasks [5.569226615350014]
因果モデリングは、自律的なエージェントによる意思決定や結果の説明を支援することができる。
ここでは,塩鉱で稼働するドローンシステムにおける因果関係に関する課題を特定する。
本稿では、因果的インフォームドPOMDP計画、オンラインSCM適応、およびポストホックな反事実的説明からなる確率的因果関係の枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-19T15:12:55Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Modular Deep Learning [120.36599591042908]
トランスファーラーニングは近年、機械学習の主要なパラダイムとなっている。
負の干渉を伴わずに複数のタスクを専門とするモデルを開発する方法はまだ不明である。
これらの課題に対する有望な解決策として、モジュール型ディープラーニングが登場した。
論文 参考訳(メタデータ) (2023-02-22T18:11:25Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - A Utility Maximization Model of Pedestrian and Driver Interactions [5.02231401459109]
本研究では,道路利用者間の対話行動の詳細を考慮し,実用性,運動プリミティブ,断続的行動決定の原則を適用したモデリングフレームワークを開発する。
これらの現象は、モデルがパラメータを進化させることによって、モデリングフレームワークから自然に現れることを示す。
論文 参考訳(メタデータ) (2021-10-21T09:42:02Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
本稿では,因果探索と反事実推論のためのアルゴリズムの開発を目的とした,高忠実度シミュレーション環境を提案する。
私たちの作業の中核となるコンポーネントは、複雑なシナリオを定義して作成することが簡単になるような、テキストの緊急性を導入することです。
我々は3つの最先端の手法による実験を行い、ベースラインを作成し、この環境の可利用性を強調する。
論文 参考訳(メタデータ) (2021-06-25T00:21:41Z) - Disentangling Identifiable Features from Noisy Data with Structured
Nonlinear ICA [4.340954888479091]
我々は、SNICA(Structured Independent Component Analysis)と呼ばれる原則的絡み合いのための新しい一般化可能なフレームワークを導入する。
我々の貢献は、非常に広い階層構造モデルに対する深層生成モデルの識別可能性理論を拡張することである。
我々は,未知分布の雑音の存在下でも,このフレームワークの識別可能性が維持可能であるという主要な結果を確立する。
論文 参考訳(メタデータ) (2021-06-17T15:56:57Z) - Grounded Relational Inference: Domain Knowledge Driven Explainable Autonomous Driving [47.22329993674051]
我々は、人間のドメイン知識とモデル固有の因果関係の両方に整合した説明を生成する説明可能なモデルを開発することを目的とする。
特に、自律運転における重要なビルディングブロック、マルチエージェントインタラクションモデリングに焦点を当てる。
シミュレーションと実環境設定の両方で対話的な交通シナリオをモデル化できることを実証する。
論文 参考訳(メタデータ) (2021-02-23T19:34:32Z) - Self-consistent theory of mobility edges in quasiperiodic chains [62.997667081978825]
準周期ポテンシャルを持つ近辺強結合鎖における移動端の自己整合理論を導入する。
モビリティエッジは、一般に研究されているオーブリー=アンドルー=ハーパー模型のエネルギー非依存的な自己双対性を欠いた準周期系において一般的なものである。
論文 参考訳(メタデータ) (2020-12-02T19:00:09Z) - Multi-agent Trajectory Prediction with Fuzzy Query Attention [15.12743751614964]
複数のエージェントを持つシーンの軌道予測は、交通予測、歩行者追跡、経路計画といった多くの領域において難しい問題である。
この課題に対処する一般的なアーキテクチャとして、運動の重要な帰納バイアス、すなわち慣性、相対運動、意図、相互作用をモデル化する。
論文 参考訳(メタデータ) (2020-10-29T19:12:12Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。