論文の概要: An expert-driven data generation pipeline for histological images
- arxiv url: http://arxiv.org/abs/2406.01403v1
- Date: Mon, 3 Jun 2024 15:05:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:30:12.371704
- Title: An expert-driven data generation pipeline for histological images
- Title(参考訳): 組織画像のための専門家駆動型データ生成パイプライン
- Authors: Roberto Basla, Loris Giulivi, Luca Magri, Giacomo Boracchi,
- Abstract要約: 本稿では,セルセグメンテーションのための合成データセットを生成する新しいパイプラインを提案する。
注釈付き画像のほんの一握りしか持たないため,本手法では,DLインスタンス分割モデルのトレーニングに使用できる大規模なデータセットを生成する。
- 参考スコア(独自算出の注目度): 7.219732640188684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning (DL) models have been successfully applied to many applications including biomedical cell segmentation and classification in histological images. These models require large amounts of annotated data which might not always be available, especially in the medical field where annotations are scarce and expensive. To overcome this limitation, we propose a novel pipeline for generating synthetic datasets for cell segmentation. Given only a handful of annotated images, our method generates a large dataset of images which can be used to effectively train DL instance segmentation models. Our solution is designed to generate cells of realistic shapes and placement by allowing experts to incorporate domain knowledge during the generation of the dataset.
- Abstract(参考訳): 深層学習(DL)モデルは、生体細胞分画や組織像の分類など、多くの応用に成功している。
これらのモデルは、アノテーションが不足し高価である医療分野において、必ずしも利用できない大量の注釈付きデータを必要とする。
この制限を克服するため,我々はセルセグメンテーションのための合成データセットを生成する新しいパイプラインを提案する。
本手法は,少数の注釈付き画像のみを前提として,DLインスタンスセグメンテーションモデルを効果的に訓練できる大規模な画像データセットを生成する。
私たちのソリューションは、データセットの生成中に専門家がドメイン知識を組み込むことによって、現実的な形状と配置のセルを生成するように設計されています。
関連論文リスト
- MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities [59.61465292965639]
本稿では,医療応用における生成モデルを活用するための新しいパラダイムについて検討する。
本稿では,テキストプロンプトとマスクに条件付き生成を可能にするMRGenという拡散型データエンジンを提案する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - Generative AI Enables Medical Image Segmentation in Ultra Low-Data Regimes [35.151834585823224]
本稿では,高品質なセグメンテーションマスクと医用画像を一意に生成する生成的深層学習フレームワークを提案する。
データ生成とセグメンテーションモデルを個別のプロセスとして扱う従来の生成モデルとは異なり、本手法ではエンドツーエンドのデータ生成にマルチレベル最適化を用いる。
提案手法は,9種類の医用画像分割タスクと16のデータセットに対して,超低速データレギュレーションにおいて高い一般化性能を示した。
論文 参考訳(メタデータ) (2024-08-30T17:11:36Z) - Could We Generate Cytology Images from Histopathology Images? An Empirical Study [1.791005104399795]
本研究では,CycleGANやNeural Style Transferといった従来の画像間転送モデルについて検討した。
本研究では,CycleGANやNeural Style Transferといった従来の画像間転送モデルについて検討した。
論文 参考訳(メタデータ) (2024-03-16T10:43:12Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
多様な合成画像や知覚アノテーションを生成できる汎用データセット生成モデルを提案する。
本手法は,事前学習した拡散モデルに基づいて,テキスト誘導画像合成を知覚データ生成に拡張する。
拡散モデルのリッチ潜時コードはデコーダモジュールを用いて正確な認識アノテーションとして効果的に復号できることを示す。
論文 参考訳(メタデータ) (2023-08-11T14:38:11Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
放射線医学報告の「印象」セクションは、放射線医と他の医師とのコミュニケーションにとって重要な基盤である。
近年の研究では、大規模医療用テキストデータを用いた印象自動生成の有望な成果が得られている。
これらのモデルは、しばしば大量の医療用テキストデータを必要とし、一般化性能が劣る。
論文 参考訳(メタデータ) (2023-04-17T17:13:42Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
論文 参考訳(メタデータ) (2022-11-03T15:19:59Z) - Histopathology DatasetGAN: Synthesizing Large-Resolution Histopathology
Datasets [0.0]
病理組織学的データセットGAN(HDGAN)は、画像の生成と分割のためのフレームワークであり、大きな解像度の病理組織像によく対応している。
生成したバックボーンの更新,ジェネレータからの遅延特徴の選択的抽出,メモリマップされた配列への切り替えなど,オリジナルのフレームワークからいくつかの適応を行う。
血栓性微小血管症における高分解能タイルデータセット上でHDGANを評価し,高分解能画像アノテーション生成タスクにおいて高い性能を示した。
論文 参考訳(メタデータ) (2022-07-06T14:33:50Z) - Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation
and Classification [4.642724910208435]
組織像解析のための大規模データセットの収集を可能にする多段階アノテーションパイプラインを提案する。
我々は、50万近いラベル付き核を含む、既知の最大の核インスタンスのセグメンテーションと分類データセットを生成する。
論文 参考訳(メタデータ) (2021-08-25T11:58:52Z) - DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort [117.41383937100751]
現在のディープネットワークは、大規模なデータセットのトレーニングの恩恵を受ける、非常にデータハングリーです。
GAN潜入コードがどのようにデコードされ、イメージのセマンティックセグメンテーションを生成するかを示す。
これらの生成されたデータセットは、実際のデータセットと同じように、コンピュータビジョンアーキテクチャのトレーニングに使用できます。
論文 参考訳(メタデータ) (2021-04-13T20:08:29Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
ImageNet作成プロセスにおける特定の設計選択が、結果のデータセットの忠実性に与える影響について検討する。
私たちの分析では、ノイズの多いデータ収集パイプラインが、結果のベンチマークと、それがプロキシとして機能する実世界のタスクとの間に、体系的なミスアライメントをもたらす可能性があることを指摘しています。
論文 参考訳(メタデータ) (2020-05-22T17:39:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。