論文の概要: Tomographic Reconstruction and Regularisation with Search Space Expansion and Total Variation
- arxiv url: http://arxiv.org/abs/2406.01469v1
- Date: Mon, 3 Jun 2024 15:57:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:10:43.943386
- Title: Tomographic Reconstruction and Regularisation with Search Space Expansion and Total Variation
- Title(参考訳): 検索空間の拡大と全変動を考慮した断層画像再構成と正規化
- Authors: Mohammad Majid al-Rifaie, Tim Blackwell,
- Abstract要約: 不完全なデータの処理は、患者が潜在的に放射線を損傷したり、長いスキャン時間に対処できない場合に重要である。
本稿では,画像空間内を粒子が移動し,再構成誤差を最小限に抑えるために,Swarmをベースとした再構成手法を提案する。
提案手法は, 標準的なトモグラフィ再構成ツールボックスアルゴリズムと比較して, 再現誤差が低いことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of ray projections to reconstruct images is a common technique in medical imaging. Dealing with incomplete data is particularly important when a patient is vulnerable to potentially damaging radiation or is unable to cope with the long scanning time. This paper utilises the reformulation of the problem into an optimisation tasks, followed by using a swarm-based reconstruction from highly undersampled data where particles move in image space in an attempt to minimise the reconstruction error. The process is prone to noise and, in addition to the recently introduced search space expansion technique, a further smoothing process, total variation regularisation, is adapted and investigated. The proposed method is shown to produce lower reproduction errors compared to standard tomographic reconstruction toolbox algorithms as well as one of the leading high-dimensional optimisers on the clinically important Shepp-Logan phantom.
- Abstract(参考訳): 画像再構成におけるレイプロジェクションの使用は、医用画像の一般的な技術である。
不完全なデータの処理は、患者が潜在的に放射線を損傷したり、長いスキャン時間に対処できない場合に特に重要である。
本稿では,問題を最適化タスクに再構成し,さらに画像空間内を粒子が移動する高度アンサンプデータからSwarmベースの再構成を用いて再構成誤差を最小化する。
最近導入された探索空間拡張技術に加えて,よりスムースなプロセスである全変分正規化も適応し,検討した。
提案手法は, 標準トモグラフィ再構成ツールボックスアルゴリズムよりも低い再生誤差を生じさせるとともに, 臨床的に重要なShepp-Loganファントムの高次元オプティマイザの1つである。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Integrating Generative and Physics-Based Models for Ptychographic Imaging with Uncertainty Quantification [0.0]
Ptychographyは、走査コヒーレントな回折イメージング技術であり、拡張サンプルのナノメートル規模の特徴を撮像することができる。
本稿では,近隣のスキャン位置間の重複を少なくしながらも効果的に機能するptychographyのベイズ逆解析法を提案する。
論文 参考訳(メタデータ) (2024-12-14T16:16:37Z) - Deep Guess acceleration for explainable image reconstruction in sparse-view CT [0.0]
スパースビューCT(Sparse-view Computed)は、医療画像における放射線線量を減らすために設計された新しいプロトコルである。
従来のフィルタバックプロジェクションの復元は、スパースデータによる深刻なアーティファクトに悩まされている。
対照的に、モデルベース反復再建(MBIR)は、臨床的使用には計算コストがかかりすぎる。
論文 参考訳(メタデータ) (2024-12-02T16:49:42Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
スパース角度トモグラフィースキャンは放射線を低減し、データ取得を加速するが、画像のアーチファクトやノイズに悩まされる。
既存の画像処理アルゴリズムはCT再構成の品質を復元することができるが、大きなトレーニングデータセットを必要とする場合が多い。
本研究は、勾配に基づく最適化により、欠落した射影ビューを最適化する自己教師付きプロジェクションインペインティング法を提案する。
論文 参考訳(メタデータ) (2023-02-13T15:15:18Z) - A Deep Generative Approach to Oversampling in Ptychography [9.658250977094562]
ptychographyの大きな欠点は、長いデータ取得時間である。
本稿では, 深層生成ネットワークから抽出したデータを用いて, わずかに取得したデータやアンダーサンプルデータを補完する手法を提案する。
深層生成ネットワークを事前学習し、データ収集時に出力を計算できるので、実験データとデータ取得時間を削減することができる。
論文 参考訳(メタデータ) (2022-07-28T22:02:01Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Physics-assisted Generative Adversarial Network for X-Ray Tomography [2.589958357631341]
深層学習が トモグラフィーの再構築に 使われています。
本研究では,トモグラフィ再構成のための物理支援ジェネレーターネットワーク(PGAN)を開発した。
論文 参考訳(メタデータ) (2022-04-07T19:21:39Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
ほとんどのアプリケーションは、高解像度の外科画像の正確なリアルタイムセグメンテーションに依存している。
我々は,高解像度画像のリアルタイム推論を行うために調整された,軽量で高効率なディープ残差アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-07-08T21:38:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。