論文の概要: Integrating Generative and Physics-Based Models for Ptychographic Imaging with Uncertainty Quantification
- arxiv url: http://arxiv.org/abs/2412.10882v1
- Date: Sat, 14 Dec 2024 16:16:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:02:43.927032
- Title: Integrating Generative and Physics-Based Models for Ptychographic Imaging with Uncertainty Quantification
- Title(参考訳): 不確実性定量化による超音波画像生成モデルと物理モデルの統合
- Authors: Canberk Ekmekci, Tekin Bicer, Zichao Wendy Di, Junjing Deng, Mujdat Cetin,
- Abstract要約: Ptychographyは、走査コヒーレントな回折イメージング技術であり、拡張サンプルのナノメートル規模の特徴を撮像することができる。
本稿では,近隣のスキャン位置間の重複を少なくしながらも効果的に機能するptychographyのベイズ逆解析法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Ptychography is a scanning coherent diffractive imaging technique that enables imaging nanometer-scale features in extended samples. One main challenge is that widely used iterative image reconstruction methods often require significant amount of overlap between adjacent scan locations, leading to large data volumes and prolonged acquisition times. To address this key limitation, this paper proposes a Bayesian inversion method for ptychography that performs effectively even with less overlap between neighboring scan locations. Furthermore, the proposed method can quantify the inherent uncertainty on the ptychographic object, which is created by the ill-posed nature of the ptychographic inverse problem. At a high level, the proposed method first utilizes a deep generative model to learn the prior distribution of the object and then generates samples from the posterior distribution of the object by using a Markov Chain Monte Carlo algorithm. Our results from simulated ptychography experiments show that the proposed framework can consistently outperform a widely used iterative reconstruction algorithm in cases of reduced overlap. Moreover, the proposed framework can provide uncertainty estimates that closely correlate with the true error, which is not available in practice. The project website is available here.
- Abstract(参考訳): Ptychographyは、走査コヒーレントな回折イメージング技術であり、拡張サンプルのナノメートル規模の特徴を撮像することができる。
1つの大きな課題は、広く使われている反復画像再構成法は、しばしば隣り合うスキャン位置間でかなりの量の重複を必要とし、大きなデータボリュームと長い取得時間をもたらすことである。
この限界に対処するため, 隣接するスキャン位置間の重複を少なくしながらも効果的に機能するptychographyのベイズ逆転法を提案する。
さらに, 提案手法は, ポティコグラフィーの逆問題の性質の悪さから生じる, ポティコグラフィー対象に固有の不確かさを定量化することができる。
提案手法は,まず物体の事前分布を深層生成モデルを用いて学習し,マルコフ連鎖モンテカルロアルゴリズムを用いて物体の後部分布から試料を生成する。
シミュレーションポチグラフィー実験の結果,提案手法は重なりが小さい場合に広く用いられている反復再構成アルゴリズムより一貫して優れることが示された。
さらに,提案手法は,実際に利用できない真の誤りと密接に相関する不確実性の推定を行うことができる。
プロジェクトのWebサイトはここにある。
関連論文リスト
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
拡散モデルは、大規模な生成画像モデルの分野を支配してきた。
本研究では,大規模な事前学習拡散モデルにおける高速拘束サンプリングのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - PtychoFormer: A Transformer-based Model for Ptychographic Phase Retrieval [9.425754476649796]
データ駆動単発写真位相検索のための階層型トランスフォーマーモデルを提案する。
本モデルでは, 細かな走査回折パターンに対する耐性を示し, 画像の再生速度は, 拡張された胸部反復エンジン (ePIE) の最大3600倍に向上した。
論文 参考訳(メタデータ) (2024-10-22T19:26:05Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - PtychoDV: Vision Transformer-Based Deep Unrolling Network for
Ptychographic Image Reconstruction [12.780951605821238]
PtychoDVは、効率的で高品質な画像再構成のために設計された、新しいディープモデルベースのネットワークである。
シミュレーションデータの結果,PtychoDVは既存のディープラーニング手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-11T14:01:36Z) - A Deep Generative Approach to Oversampling in Ptychography [9.658250977094562]
ptychographyの大きな欠点は、長いデータ取得時間である。
本稿では, 深層生成ネットワークから抽出したデータを用いて, わずかに取得したデータやアンダーサンプルデータを補完する手法を提案する。
深層生成ネットワークを事前学習し、データ収集時に出力を計算できるので、実験データとデータ取得時間を削減することができる。
論文 参考訳(メタデータ) (2022-07-28T22:02:01Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychographyは、ナノメートルスケールでサンプルの非侵襲的なイメージングを可能にする、よく確立されたコヒーレント回折イメージング技術である。
Ptychographyの最大の制限は、サンプルの機械的スキャンによる長いデータ取得時間である。
本稿では,深部画像先行と深部画像先行とを組み合わせた生成モデルを提案する。
論文 参考訳(メタデータ) (2022-05-05T02:18:26Z) - Mining the manifolds of deep generative models for multiple
data-consistent solutions of ill-posed tomographic imaging problems [10.115302976900445]
断層撮影は一般的に逆問題である。
本稿では,トモグラフィ逆問題に対する複数の解を求める経験的サンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T20:27:31Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
深層ニューラルネットワークに展開する反復アルゴリズムを用いて,学習したブロックスパース最適化手法を提案する。
本稿では、正規化パラメータの選択を学ぶことができる学習ブロック反復収縮しきい値アルゴリズムを使用することの利点を示す。
論文 参考訳(メタデータ) (2020-12-07T09:27:16Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。