Spectroscopy and modeling of $^{171}$Yb Rydberg states for high-fidelity two-qubit gates
- URL: http://arxiv.org/abs/2406.01482v2
- Date: Wed, 13 Nov 2024 22:36:36 GMT
- Title: Spectroscopy and modeling of $^{171}$Yb Rydberg states for high-fidelity two-qubit gates
- Authors: Michael Peper, Yiyi Li, Daniel Y. Knapp, Mila Bileska, Shuo Ma, Genyue Liu, Pai Peng, Bichen Zhang, Sebastian P. Horvath, Alex P. Burgers, Jeff D. Thompson,
- Abstract summary: Highly excited Rydberg states and their interactions play an important role in quantum computing and simulation.
Here, we present multichannel quantum defect (MQDT) models for highly excited $174$Yb and $171$Yb Rydberg states with $L leq 2$.
- Score: 4.0764044074585515
- License:
- Abstract: Highly excited Rydberg states and their interactions play an important role in quantum computing and simulation. These properties can be predicted accurately for alkali atoms with simple Rydberg level structures. However, an extension of these methods to more complex atoms such as alkaline-earth atoms has not been demonstrated or experimentally validated. Here, we present multichannel quantum defect (MQDT) models for highly excited $^{174}$Yb and $^{171}$Yb Rydberg states with $L \leq 2$. The models are developed using a combination of existing literature data and new, high-precision laser and microwave spectroscopy in an atomic beam, and validated by detailed comparison with experimentally measured Stark shifts and magnetic moments. We then use these models to compute interaction potentials between two Yb atoms, and find excellent agreement with direct measurements in an optical tweezer array. From the computed interaction potential, we identify an anomalous F\"orster resonance that likely degraded the fidelity of previous entangling gates in $^{171}$Yb using $F=3/2$ Rydberg states. We then identify a more suitable $F=1/2$ state, and achieve a state-of-the-art controlled-Z gate fidelity of $F=0.994(1)$, with the remaining error fully explained by known sources. This work establishes a solid foundation for the continued development of quantum computing, simulation and entanglement-enhanced metrology with Yb neutral atom arrays.
Related papers
- Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Towards the "puzzle" of Chromium dimer Cr$_2$: predicting the Born-Oppenheimer rovibrational spectrum [44.99833362998488]
This paper calculates the potential energy curve for the state $X1Sigma+$ of the Cr$$$ dimer.
It is found for the first time for the whole range of internuclear distances $R$.
arXiv Detail & Related papers (2024-01-06T17:00:12Z) - Generation of complete graph states in a spin-$1/2$ Heisenberg chain
with a globally optimized magnetic field [0.0]
We introduce a method for generating multiparticle complete graph states using a spin$1/2$ Heisenberg $XX$ chain subjected to a time-varying magnetic field.
Our scheme relies exclusively on nearest-neighbor interactions between atoms, with real-time magnetic field formation facilitated by quantum optimal control theory.
arXiv Detail & Related papers (2024-01-03T21:32:35Z) - Hyperfine Structure of $nP_{1/2}$ Rydberg States in $^{85}$Rb [0.0]
We measure the hyperfine structure of $nP_1/2$ Rydberg states using mm-wave spectroscopy on an ensemble of laser-cooled $85$Rb atoms.
arXiv Detail & Related papers (2022-07-18T13:20:17Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Eigenstates of two-level systems in a single-mode quantum field: from
quantum Rabi model to $N$-atom Dicke model [0.0]
We show that the Hamiltonian describing the resonant interaction of $N$ two-level systems with a single-mode electromagnetic quantum field in the Coulomb gauge can be diagonalized with a high degree of accuracy.
arXiv Detail & Related papers (2022-02-07T22:14:13Z) - Analyzing the Rydberg-based omg architecture for $^{171}$Yb nuclear
spins [0.0]
Neutral alkaline earth(-like) atoms have been employed in atomic arrays with individual readout, control, and high-fidelity Rydberg-mediated entanglement.
We study the multilevel dynamics of the nuclear spin states when driving the clock or Rydberg transition with Rabi frequency.
arXiv Detail & Related papers (2022-01-11T17:20:13Z) - Rydberg quantum computation with nuclear spins in two-electron neutral
atoms [4.394728504061752]
Alkaline-earth-like(AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing.
We provide two solutions to this outstanding challenge with realistic data of well-studied AEL isotopes.
arXiv Detail & Related papers (2021-03-25T13:55:04Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.