論文の概要: Online Optimization Perspective on First-Order and Zero-Order Decentralized Nonsmooth Nonconvex Stochastic Optimization
- arxiv url: http://arxiv.org/abs/2406.01484v1
- Date: Mon, 3 Jun 2024 16:09:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:10:43.858505
- Title: Online Optimization Perspective on First-Order and Zero-Order Decentralized Nonsmooth Nonconvex Stochastic Optimization
- Title(参考訳): オンライン最適化による一階・零階分散非平滑非凸確率最適化
- Authors: Emre Sahinoglu, Shahin Shahrampour,
- Abstract要約: 分散環境下での非平滑な非平滑な目的に対する(delta,,ilon$)-定常点の有限時間解析について検討する。
$Oは分散非滑らかな最適化のための最初の有限時間保証である。
- 参考スコア(独自算出の注目度): 8.670873561640903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the finite-time analysis of finding ($\delta,\epsilon$)-stationary points for nonsmooth nonconvex objectives in decentralized stochastic optimization. A set of agents aim at minimizing a global function using only their local information by interacting over a network. We present a novel algorithm, called Multi Epoch Decentralized Online Learning (ME-DOL), for which we establish the sample complexity in various settings. First, using a recently proposed online-to-nonconvex technique, we show that our algorithm recovers the optimal convergence rate of smooth nonconvex objectives. We then extend our analysis to the nonsmooth setting, building on properties of randomized smoothing and Goldstein-subdifferential sets. We establish the sample complexity of $O(\delta^{-1}\epsilon^{-3})$, which to the best of our knowledge is the first finite-time guarantee for decentralized nonsmooth nonconvex stochastic optimization in the first-order setting (without weak-convexity), matching its optimal centralized counterpart. We further prove the same rate for the zero-order oracle setting without using variance reduction.
- Abstract(参考訳): 分散確率最適化における非滑らかな非凸目的に対する(\delta,\epsilon$)-定常点の有限時間解析について検討する。
エージェントのセットは、ネットワークを介して対話することで、ローカル情報のみを使用してグローバル関数を最小化することを目的としている。
本稿では,多言語多言語分散オンライン学習(ME-DOL, Multi Epoch Decentralized Online Learning)と呼ばれる新しいアルゴリズムを提案する。
まず,最近提案したオンライン・非凸手法を用いて,滑らかな非凸対象の最適収束率を復元する手法を提案する。
次に、無作為な滑らか化とゴールドスタイン偏微分集合の性質に基づいて、解析を非滑らかな設定に拡張する。
我々は、$O(\delta^{-1}\epsilon^{-3})$のサンプル複雑性を確立し、これは我々の知る限り、分散化された非滑らかな非凸確率最適化を(弱凸性を伴わない)1次設定で最初の有限時間保証である。
さらに, 分散還元を使わずに, ゼロオーダーのオラクル設定に対して同じ速度を証明した。
関連論文リスト
- Faster Adaptive Decentralized Learning Algorithms [24.379734053137597]
適応学習と有限サム最適化のための高速分散非分散アルゴリズム(AdaMDOSとAdaMDOF)のクラスを提案する。
いくつかの実験結果から,アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2024-08-19T08:05:33Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
リプシッツの目的の滑らかな点も凸点も生成しない点の複雑さについて検討する。
私たちの分析は単純だが強力だ。
Goldstein-subdifferential set, これは最近の進歩を可能にする。
非滑らかな非最適化
論文 参考訳(メタデータ) (2023-07-10T11:56:04Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
分散化されたミニマックス最適化は、幅広い機械学習に応用されているため、ここ数年で活発に研究されている。
本稿では,非コンカブ問題に対する2つの新しい分散化ミニマックス最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-24T02:19:39Z) - Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax
Problems [39.197569803430646]
最小限の最適化は、敵対的ネットワーク(GAN)や敵対的トレーニングなど、多くの機械学習タスクにおいて重要な役割を果たす。
近年,ミニマックス問題の解法として多種多様な最適化手法が提案されているが,そのほとんどは分散設定を無視している。
論文 参考訳(メタデータ) (2023-04-21T11:38:41Z) - Optimal Stochastic Non-smooth Non-convex Optimization through
Online-to-Non-convex Conversion [56.92236659731376]
本稿では,新しい解析手法を用いて,未知の非平滑な目的を最適化するアルゴリズムを提案する。
決定論的二階スムーズな目的のために、先進的な楽観的なオンライン学習技術を適用することで、新しい$O(delta0.5)All$が最適または最もよく知られた結果の回復を可能にする。
論文 参考訳(メタデータ) (2023-02-07T22:09:20Z) - A hybrid variance-reduced method for decentralized stochastic non-convex
optimization [15.447966950703947]
textttGTHSGDアルゴリズムは、グローバルな勾配を追跡するためにネットワークを実装している。
textttGTHSGDは、必要なエラートレランス$epsilon$が十分小さいときに、ネットワークの複雑さを$O(n-1)$にします。
論文 参考訳(メタデータ) (2021-02-12T20:13:05Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
敵対的レジリエントな分散最適化。
機械は独立して勾配を計算し 協力することができます
私達のアルゴリズムは新しい集中の技術およびサンプル複雑性に基づいています。
それは非常に実用的です:それはないときすべての前の方法の性能を改善します。
セッティングマシンがあります。
論文 参考訳(メタデータ) (2020-12-28T17:19:32Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
定常点に収束する一般化外空間を提案する。
このアルゴリズムは一般の$p$ノルド空間だけでなく、一般の$p$次元ベクトル空間にも適用される。
論文 参考訳(メタデータ) (2020-10-31T21:35:42Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。