Physics-Informed Neural Networks for Dynamic Process Operations with Limited Physical Knowledge and Data
- URL: http://arxiv.org/abs/2406.01528v3
- Date: Mon, 30 Sep 2024 15:30:25 GMT
- Title: Physics-Informed Neural Networks for Dynamic Process Operations with Limited Physical Knowledge and Data
- Authors: Mehmet Velioglu, Song Zhai, Sophia Rupprecht, Alexander Mitsos, Andreas Jupke, Manuel Dahmen,
- Abstract summary: In chemical engineering, process data are expensive to acquire, and complex phenomena are difficult to fully model.
In particular, we focus on estimating states for which neither direct data nor observational equations are available.
We show that PINNs are capable of modeling processes when relatively few experimental data and only partially known mechanistic descriptions are available.
- Score: 38.39977540117143
- License:
- Abstract: In chemical engineering, process data are expensive to acquire, and complex phenomena are difficult to fully model. We explore the use of physics-informed neural networks (PINNs) for modeling dynamic processes with incomplete mechanistic semi-explicit differential-algebraic equation systems and scarce process data. In particular, we focus on estimating states for which neither direct observational data nor constitutive equations are available. We propose an easy-to-apply heuristic to assess whether estimation of such states may be possible. As numerical examples, we consider a continuously stirred tank reactor and a liquid-liquid separator. We find that PINNs can infer immeasurable states with reasonable accuracy, even if respective constitutive equations are unknown. We thus show that PINNs are capable of modeling processes when relatively few experimental data and only partially known mechanistic descriptions are available, and conclude that they constitute a promising avenue that warrants further investigation.
Related papers
- MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
We explore whether a similar approach can be applied to scientific foundation models (SFMs)
We collect low-cost physics-informed neural network (PINN)-based approximated prior data in the form of solutions to partial differential equations (PDEs) constructed through an arbitrary linear combination of mathematical dictionaries.
We provide experimental evidence on the one-dimensional convection-diffusion-reaction equation, which demonstrate that pre-training remains robust even with approximated prior data.
arXiv Detail & Related papers (2024-10-09T00:52:00Z) - Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - Data Distillation for Neural Network Potentials toward Foundational
Dataset [6.373914211316965]
generative models can swiftly propose promising materials for targeted applications.
However, the predicted properties of materials through the generative models often do not match with calculated properties through ab initio calculations.
This study utilized extended ensemble molecular dynamics (MD) to secure a broad range of liquid- and solid-phase configurations in one of the metallic systems, nickel.
We found that the NNP trained from the distilled data could predict different energy-minimized closed-pack crystal structures even though those structures were not explicitly part of the initial data.
arXiv Detail & Related papers (2023-11-09T14:41:45Z) - Correcting model misspecification in physics-informed neural networks
(PINNs) [2.07180164747172]
We present a general approach to correct the misspecified physical models in PINNs for discovering governing equations.
We employ other deep neural networks (DNNs) to model the discrepancy between the imperfect models and the observational data.
We envision that the proposed approach will extend the applications of PINNs for discovering governing equations in problems where the physico-chemical or biological processes are not well understood.
arXiv Detail & Related papers (2023-10-16T19:25:52Z) - Surrogate-data-enriched Physics-Aware Neural Networks [0.0]
We investigate how physics-aware models can be enriched with cheaper, but inexact, data from other surrogate models like Reduced-Order Models (ROMs)
As a proof of concept, we consider the one-dimensional wave equation and show that the training accuracy is increased by two orders of magnitude when inexact data from ROMs is incorporated.
arXiv Detail & Related papers (2021-12-10T12:39:07Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.