論文の概要: Unlocking Guidance for Discrete State-Space Diffusion and Flow Models
- arxiv url: http://arxiv.org/abs/2406.01572v1
- Date: Mon, 3 Jun 2024 17:51:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:51:15.505781
- Title: Unlocking Guidance for Discrete State-Space Diffusion and Flow Models
- Title(参考訳): 離散状態空間拡散と流れモデルのためのアンロック誘導
- Authors: Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, Jennifer Listgarten,
- Abstract要約: 本稿では、離散状態空間モデルにガイダンスを適用するための汎用的および原則的手法を提案する。
提案手法は, 画像のガイド生成, 小分子, DNA配列, タンパク質配列など, 様々な用途に応用できることを実証する。
- 参考スコア(独自算出の注目度): 1.7749342709605143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models on discrete state-spaces have a wide range of potential applications, particularly in the domain of natural sciences. In continuous state-spaces, controllable and flexible generation of samples with desired properties has been realized using guidance on diffusion and flow models. However, these guidance approaches are not readily amenable to discrete state-space models. Consequently, we introduce a general and principled method for applying guidance on such models. Our method depends on leveraging continuous-time Markov processes on discrete state-spaces, which unlocks computational tractability for sampling from a desired guided distribution. We demonstrate the utility of our approach, Discrete Guidance, on a range of applications including guided generation of images, small-molecules, DNA sequences and protein sequences.
- Abstract(参考訳): 離散状態空間上の生成モデルは、特に自然科学の分野において、幅広い潜在的な応用を持つ。
連続状態空間では、拡散と流れモデルに関するガイダンスを用いて、所望の特性を持つ制御可能で柔軟なサンプルの生成を実現している。
しかし、これらのガイダンスアプローチは離散状態空間モデルに容易には適用できない。
そこで本研究では,そのようなモデルにガイダンスを適用するための汎用的,原則的手法を提案する。
提案手法は離散状態空間上での連続時間マルコフ過程の活用に依存し,所望の導出分布から抽出する際の計算的トラクタビリティを解放する。
我々は,画像のガイド生成,小分子,DNA配列,タンパク質配列など,様々な応用のアプローチであるディスクリートガイダンスの有用性を実証する。
関連論文リスト
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design [30.241533997522236]
我々は、ラベルのないデータと滑らかな制約を利用して、ガイド付き拡散モデルのアウト・オブ・ディストリビューション一般化を改善するシンプルなプラグ・アンド・プレイ法である文脈誘導拡散法(CGD)を開発した。
このアプローチは、連続的、離散的、グラフ構造化された拡散プロセスや、薬物発見、材料科学、タンパク質設計にまたがる応用など、様々な状況において、大幅なパフォーマンス向上をもたらす。
論文 参考訳(メタデータ) (2024-07-16T17:34:00Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design [37.634098563033795]
本稿では、フローベース生成モデルの実現に欠落したリンクを提供する離散データのフローベースモデルを提案する。
私たちの重要な洞察は、連続時間マルコフ連鎖を用いて連続空間フローマッチングの離散的等価性を実現できるということです。
この能力をタンパク質共設計のタスクに適用し、タンパク質の構造と配列を共同生成するモデルを学ぶ。
論文 参考訳(メタデータ) (2024-02-07T16:15:36Z) - Fast Sampling via Discrete Non-Markov Diffusion Models [49.598085130313514]
離散データ生成のための高速化された逆サンプリングを許容する離散非マルコフ拡散モデルを提案する。
提案手法は, ニューラルネットワークに対する関数評価の回数を大幅に削減し, サンプリング処理を高速化する。
論文 参考訳(メタデータ) (2023-12-14T18:14:11Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
一般多様体上に生成拡散過程を構築するための原理的枠組みを導入する。
従来の拡散モデルの認知的アプローチに従う代わりに、橋梁プロセスの混合を用いて拡散過程を構築する。
混合過程を幾何学的に理解し,データ点への接する方向の重み付け平均としてドリフトを導出する。
論文 参考訳(メタデータ) (2023-10-11T06:04:40Z) - Free-Form Variational Inference for Gaussian Process State-Space Models [21.644570034208506]
ベイズGPSSMにおける新しい推論法を提案する。
本手法はハミルトニアンモンテカルロの誘導による自由形式変分推論に基づく。
提案手法は, 競合する手法よりも, 遷移力学や潜伏状態をより正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-02-20T11:34:16Z) - Diffusion Generative Models in Infinite Dimensions [10.15736468214228]
拡散生成モデルを一般化して関数空間で直接操作する。
関数空間の観点の大きな利点は、開発中の関数空間を明示的に指定できることです。
提案手法により,関数値データの条件付き生成と条件付き生成を両立させることができる。
論文 参考訳(メタデータ) (2022-12-01T21:54:19Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。