Magnetically generated spin-orbit coupling for ultracold atoms with slowly varying periodic driving
- URL: http://arxiv.org/abs/2406.01619v1
- Date: Fri, 31 May 2024 15:42:09 GMT
- Title: Magnetically generated spin-orbit coupling for ultracold atoms with slowly varying periodic driving
- Authors: Domantas Burba, Mažena Mackoit Sinkevičienė, Viktor Novičenko, Emilia Witkowska, Gediminas Juzeliūnas,
- Abstract summary: We show how to by-pass the micro-motion emerging in the magnetically induced SOC by switching on and off properly the oscillating magnetic fields.
We consider the exact dynamics of the system and demonstrate that the overall dynamics can be immune to the micro-motion.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The spin-orbit coupling (SOC) affecting the center of mass of ultracold atoms can be simulated using a properly chosen periodic sequence of magnetic pulses. Yet such a method is generally accompanied by micro-motion which hinders a precise control of atomic dynamics and thus complicating practical applications. Here we show how to by-pass the micro-motion emerging in the magnetically induced SOC by switching on and off properly the oscillating magnetic fields at the initial and final times. We consider the exact dynamics of the system and demonstrate that the overall dynamics can be immune to the micro-motion. The exact dynamics is shown to agree well with the evolution of the system described by slowly changing effective Floquet Hamiltonian including the SOC term. The agreement is shown to be the best when the phase of the periodic driving takes a specific value for which the effect of the spin-orbit coupling is maximum.
Related papers
- Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.
We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.
We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - Spin/Phonon Dynamics in Single Molecular Magnets: I. quantum embedding [3.100390591580898]
Single molecular magnets (SMMs) and Metal-Organic Frameworks (MOFs) attract significant interest due to their potential in quantum information processing, scalable quantum computing, and extended lifetimes and coherence times.
The limiting factor in these systems is often the spin dephasing caused by interactions and couplings with the vibrational motions of the molecular framework.
This work introduces a systematic projection/embedding scheme to analyze spin-phonon dynamics in molecular magnets.
arXiv Detail & Related papers (2024-07-10T20:49:34Z) - Scalable spin squeezing from critical slowing down in short-range interacting systems [0.0]
We show that scalable squeezing can be produced in 2d U(1)-symmetric systems even by short-range interactions.
Our results open the path to realizing massive entangled states of potential metrological interest in many relevant platforms of quantum simulation and information processing.
arXiv Detail & Related papers (2024-04-18T21:29:43Z) - Electron-mediated entanglement of two distant macroscopic ferromagnets
within a nonequilibrium spintronic device [0.8030359871216614]
We demonstrate that a current pulse can be harnessed to entangle quantum localized spins of two spatially separated spacersmagnets (FMs)
We quantify the mixed-state entanglement generated between the FM layers by tracking the time-evolution of the full density matrix and analyzing the build-up of the mutual logarithmic negativity over time.
We propose a current-pump/X-ray-probe'' scheme, utilizing ultrafast X-ray spectroscopy, that can witness nonequilibrium and transient entanglement of the FM layers.
arXiv Detail & Related papers (2022-10-13T00:04:57Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Chiral current in Floquet cavity-magnonics [0.0]
Floquet engineering can induce complex collective behaviour and interesting synthetic gauge-field in quantum systems.
We realize a chiral state-transfer in a cavity-magnonic system using a Floquet drive on frequencies of the magnon modes.
arXiv Detail & Related papers (2022-06-20T02:33:14Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.