論文の概要: Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement
- arxiv url: http://arxiv.org/abs/2410.04444v2
- Date: Fri, 18 Oct 2024 01:57:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 07:25:54.539460
- Title: Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement
- Title(参考訳): Gödel Agent: 再帰的自己改善のための自己参照エージェントフレームワーク
- Authors: Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun Wan, William Yang Wang,
- Abstract要約: G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
- 参考スコア(独自算出の注目度): 117.94654815220404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of large language models (LLMs) has significantly enhanced the capabilities of AI-driven agents across various tasks. However, existing agentic systems, whether based on fixed pipeline algorithms or pre-defined meta-learning frameworks, cannot search the whole agent design space due to the restriction of human-designed components, and thus might miss the globally optimal agent design. In this paper, we introduce G\"odel Agent, a self-evolving framework inspired by the G\"odel machine, enabling agents to recursively improve themselves without relying on predefined routines or fixed optimization algorithms. G\"odel Agent leverages LLMs to dynamically modify its own logic and behavior, guided solely by high-level objectives through prompting. Experimental results on mathematical reasoning and complex agent tasks demonstrate that implementation of G\"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩により、さまざまなタスクにわたるAI駆動エージェントの能力が大幅に向上した。
しかし、固定パイプラインアルゴリズムや事前定義されたメタラーニングフレームワークをベースとする既存のエージェントシステムは、人間の設計したコンポーネントの制限によりエージェント設計空間全体を探索できないため、グローバルな最適なエージェント設計を見逃す可能性がある。
本稿では,G\"odel Machineにインスパイアされた自己進化型フレームワークであるG\"odel Agentを紹介する。
G\"odel Agent"はLSMを活用して、プロンプトを通じて高レベルな目的のみによってガイドされる、自身のロジックと振る舞いを動的に変更する。
数学的推論および複雑なエージェントタスクの実験結果は、G\"odel Agent"の実装が連続的な自己改善を実現し、パフォーマンス、効率、一般化性において手作業によるエージェントを超越することを示した。
関連論文リスト
- AutoAgent: A Fully-Automated and Zero-Code Framework for LLM Agents [4.57755315319748]
大規模言語モデル (LLM) エージェントはタスクの自動化とインテリジェントな意思決定において顕著な能力を示した。
これらのフレームワークは、主に開発者に対して広範な技術的専門知識を提供する。
世界の人口の0.03%のみが必要なプログラミングスキルを持っている。
論文 参考訳(メタデータ) (2025-02-09T16:53:56Z) - Free Agent in Agent-Based Mixture-of-Experts Generative AI Framework [0.0]
強化学習自由エージェント (Reinforcement Learning Free Agent, RLFA) アルゴリズムは、永続的な過パフォーマンスを示すエージェントを検出し、除去するための報酬に基づくメカニズムを導入する。
第一のユースケースは不正検出であり、RLFAは事前に設定された閾値以下で検出精度が低下するエージェントを即座に交換する。
このダイナミックでフリーの緊急サイクルは、持続的な正確さ、出現する脅威への迅速な適応、進行中の運用に対する最小限の中断を保証する。
論文 参考訳(メタデータ) (2025-01-29T13:00:22Z) - AgentRefine: Enhancing Agent Generalization through Refinement Tuning [28.24897427451803]
LLM(Large Language Model)ベースのエージェントは、人間のような複雑なタスクを実行する能力を示した。
オープンソースLLMとGPTシリーズのような商用モデルの間にはまだ大きなギャップがある。
本稿では,命令チューニングによるLLMのエージェント一般化機能の改善に焦点をあてる。
論文 参考訳(メタデータ) (2025-01-03T08:55:19Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
本稿ではエージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを紹介し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
55のリアルな自動化AI開発タスクのベンチマークであるDevAIを紹介します。
論文 参考訳(メタデータ) (2024-10-14T17:57:02Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [81.32722475387364]
大規模言語モデルに基づくエージェントが注目され、ますます人気が高まっている。
計画能力は LLM ベースのエージェントの重要な構成要素であり、通常は初期状態から望ましい目標を達成する必要がある。
近年の研究では、専門家レベルの軌跡を指導訓練用LLMに活用することで、効果的に計画能力を向上させることが示されている。
論文 参考訳(メタデータ) (2024-08-01T17:59:46Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは進化的アルゴリズムによって専門家エージェントをマルチエージェントシステムに自動的に拡張する汎用的な手法である。
EvoAgentは複数の専門家エージェントを自動生成し,LLMエージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - Formally Specifying the High-Level Behavior of LLM-Based Agents [24.645319505305316]
LLMはタスク固有の微調整モデルを必要とせずに、課題を解決するための有望なツールとして登場した。
現在、このようなエージェントの設計と実装はアドホックであり、LLMベースのエージェントが自然に適用できる様々なタスクは、エージェント設計に一律に適合するアプローチが存在しないことを意味する。
エージェント構築のプロセスを簡単にする最小主義的生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-12T17:24:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。