Teams of LLM Agents can Exploit Zero-Day Vulnerabilities
- URL: http://arxiv.org/abs/2406.01637v1
- Date: Sun, 2 Jun 2024 16:25:26 GMT
- Title: Teams of LLM Agents can Exploit Zero-Day Vulnerabilities
- Authors: Richard Fang, Rohan Bindu, Akul Gupta, Qiusi Zhan, Daniel Kang,
- Abstract summary: We show that teams of LLM agents can exploit real-world, zero-day vulnerabilities.
We introduce HPTSA, a system of agents with a planning agent that can launch subagents.
We construct a benchmark of 15 real-world vulnerabilities and show that our team of agents improve over prior work by up to 4.5$times$.
- Score: 3.2855317710497625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM agents have become increasingly sophisticated, especially in the realm of cybersecurity. Researchers have shown that LLM agents can exploit real-world vulnerabilities when given a description of the vulnerability and toy capture-the-flag problems. However, these agents still perform poorly on real-world vulnerabilities that are unknown to the agent ahead of time (zero-day vulnerabilities). In this work, we show that teams of LLM agents can exploit real-world, zero-day vulnerabilities. Prior agents struggle with exploring many different vulnerabilities and long-range planning when used alone. To resolve this, we introduce HPTSA, a system of agents with a planning agent that can launch subagents. The planning agent explores the system and determines which subagents to call, resolving long-term planning issues when trying different vulnerabilities. We construct a benchmark of 15 real-world vulnerabilities and show that our team of agents improve over prior work by up to 4.5$\times$.
Related papers
- AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents [84.96249955105777]
LLM agents may pose a greater risk if misused, but their robustness remains underexplored.
We propose a new benchmark called AgentHarm to facilitate research on LLM agent misuse.
We find leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking.
arXiv Detail & Related papers (2024-10-11T17:39:22Z) - On the Resilience of Multi-Agent Systems with Malicious Agents [58.79302663733702]
This paper investigates what is the resilience of multi-agent system structures under malicious agents.
We devise two methods, AutoTransform and AutoInject, to transform any agent into a malicious one.
We show that two defense methods, introducing a mechanism for each agent to challenge others' outputs, or an additional agent to review and correct messages, can enhance system resilience.
arXiv Detail & Related papers (2024-08-02T03:25:20Z) - Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification [35.16099878559559]
Large language models (LLMs) have experienced significant development and are being deployed in real-world applications.
We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions.
Our experiments reveal that these attacks can induce failure rates exceeding 80% in multiple scenarios.
arXiv Detail & Related papers (2024-07-30T14:35:31Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
Existing methods for enhancing the safety of large language models (LLMs) are not directly transferable to LLM-powered agents.
We propose GuardAgent, the first LLM agent as a guardrail to other LLM agents.
GuardAgent comprises two steps: 1) creating a task plan by analyzing the provided guard requests, and 2) generating guardrail code based on the task plan and executing the code by calling APIs or using external engines.
arXiv Detail & Related papers (2024-06-13T14:49:26Z) - LLM Agents can Autonomously Exploit One-day Vulnerabilities [2.3999111269325266]
We show that LLM agents can autonomously exploit one-day vulnerabilities in real-world systems.
Our GPT-4 agent requires the CVE description for high performance.
Our findings raise questions around the widespread deployment of highly capable LLM agents.
arXiv Detail & Related papers (2024-04-11T22:07:19Z) - Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents [47.219047422240145]
We take the first step to investigate one of the typical safety threats, backdoor attack, to LLM-based agents.
Specifically, compared with traditional backdoor attacks on LLMs that are only able to manipulate the user inputs and model outputs, agent backdoor attacks exhibit more diverse and covert forms.
arXiv Detail & Related papers (2024-02-17T06:48:45Z) - LLM Agents can Autonomously Hack Websites [3.5248694676821484]
We show that large language models (LLMs) can function autonomously as agents.
In this work, we show that LLM agents can autonomously hack websites.
We also show that GPT-4 is capable of autonomously finding vulnerabilities in websites in the wild.
arXiv Detail & Related papers (2024-02-06T14:46:08Z) - TrustAgent: Towards Safe and Trustworthy LLM-based Agents [50.33549510615024]
This paper presents an Agent-Constitution-based agent framework, TrustAgent, with a focus on improving the LLM-based agent safety.
The proposed framework ensures strict adherence to the Agent Constitution through three strategic components: pre-planning strategy which injects safety knowledge to the model before plan generation, in-planning strategy which enhances safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection.
arXiv Detail & Related papers (2024-02-02T17:26:23Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.