論文の概要: FNP: Fourier Neural Processes for Arbitrary-Resolution Data Assimilation
- arxiv url: http://arxiv.org/abs/2406.01645v1
- Date: Mon, 3 Jun 2024 12:24:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:21:41.843814
- Title: FNP: Fourier Neural Processes for Arbitrary-Resolution Data Assimilation
- Title(参考訳): FNP : 任意解法データ同化のためのフーリエニューラルプロセス
- Authors: Kun Chen, Tao Chen, Peng Ye, Hao Chen, Kang Chen, Tao Han, Wanli Ouyang, Lei Bai,
- Abstract要約: 本稿では, テクティット・テキストbfFourier Neural Processs (FNP) を用いて, テクティット・arbitrary- resolution データ同化法を提案する。
固定解像度でトレーニングしたFNPは, 微調整を伴わずに, 分布外分解能と観測情報再構成タスクとの同化を直接処理できる。
- 参考スコア(独自算出の注目度): 58.149902193341816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data assimilation is a vital component in modern global medium-range weather forecasting systems to obtain the best estimation of the atmospheric state by combining the short-term forecast and observations. Recently, AI-based data assimilation approaches have attracted increasing attention for their significant advantages over traditional techniques in terms of computational consumption. However, existing AI-based data assimilation methods can only handle observations with a specific resolution, lacking the compatibility and generalization ability to assimilate observations with other resolutions. Considering that complex real-world observations often have different resolutions, we propose the \textit{\textbf{Fourier Neural Processes}} (FNP) for \textit{arbitrary-resolution data assimilation} in this paper. Leveraging the efficiency of the designed modules and flexible structure of neural processes, FNP achieves state-of-the-art results in assimilating observations with varying resolutions, and also exhibits increasing advantages over the counterparts as the resolution and the amount of observations increase. Moreover, our FNP trained on a fixed resolution can directly handle the assimilation of observations with out-of-distribution resolutions and the observational information reconstruction task without additional fine-tuning, demonstrating its excellent generalization ability across data resolutions as well as across tasks.
- Abstract(参考訳): データ同化は、短期的な予測と観測を組み合わせることで、大気状態の最良の推定を得るために、現代の中距離気象予報システムにおいて欠かせない要素である。
近年、AIベースのデータ同化アプローチは、計算消費の点で従来の技術よりも大きな優位性があることから注目が集まっている。
しかし、既存のAIベースのデータ同化法は特定の解像度で観測のみを扱うことができ、他の解像度と観測を同化する互換性と一般化能力に欠ける。
本稿では、複雑な実世界の観測がしばしば異なる分解能を持つことを考慮し、この論文において、textit{arbitrary- resolution data assimilation} のための \textit{\textbf{Fourier Neural Processes}} (FNP) を提案する。
設計されたモジュールの効率と神経プロセスの柔軟な構造を活用し、FNPは様々な解像度で観察を同化することで最先端の結果を達成するとともに、解像度と観測量の増大に伴い、それに対する利点が増大する。
さらに, 固定解像度で訓練したFNPは, 細調整を伴わずに, 分布外解像度と観測情報再構成タスクとの同化を直接処理し, データ解像度, タスク間での優れた一般化能力を示すことができる。
関連論文リスト
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Spatially-Aware Diffusion Models with Cross-Attention for Global Field Reconstruction with Sparse Observations [1.371691382573869]
フィールド再構成タスクにおけるスコアベース拡散モデルの開発と拡張を行う。
本研究では,観測領域と観測領域の間のトラクタブルマッピングを構築するための条件符号化手法を提案する。
本研究では, モデルが再現可能かどうかを把握し, 融合結果の精度を向上する能力を示す。
論文 参考訳(メタデータ) (2024-08-30T19:46:23Z) - REMEDI: Corrective Transformations for Improved Neural Entropy Estimation [0.7488108981865708]
我々は微分エントロピーの効率的かつ正確な推定のために$textttREMEDI$を紹介した。
提案手法は,幅広い推定課題にまたがる改善を実証する。
自然に情報理論による教師あり学習モデルに拡張することができる。
論文 参考訳(メタデータ) (2024-02-08T14:47:37Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - Federated Learning as Variational Inference: A Scalable Expectation
Propagation Approach [66.9033666087719]
本稿では,推論の視点を拡張し,フェデレート学習の変分推論の定式化について述べる。
我々は、FedEPを標準フェデレーション学習ベンチマークに適用し、収束速度と精度の両方において、強いベースラインを上回ります。
論文 参考訳(メタデータ) (2023-02-08T17:58:11Z) - Flow-based Recurrent Belief State Learning for POMDPs [20.860726518161204]
部分的に観測可能なマルコフ決定プロセス(POMDP)は、実世界のシーケンシャルな意思決定プロセスをモデル化するための原則的で汎用的なフレームワークを提供する。
主な課題は、観測不能な環境状態の確率分布である信念状態をどのように正確に取得するかである。
近年のディープラーニング技術の進歩は、良き信念状態を学ぶ大きな可能性を示している。
論文 参考訳(メタデータ) (2022-05-23T05:29:55Z) - Loss Bounds for Approximate Influence-Based Abstraction [81.13024471616417]
影響に基づく抽象化は、システムの残りの部分が与える「影響」とともに、局所的なサブプロブレムをモデル化することでレバレッジを得ることを目的としている。
本稿では,理論的観点から,そのような手法の性能について考察する。
交叉エントロピーで訓練されたニューラルネットワークは、近似的な影響表現を学習するのに適していることを示す。
論文 参考訳(メタデータ) (2020-11-03T15:33:10Z) - High-resolution signal recovery via generalized sampling and functional
principal component analysis [0.609170287691728]
本稿では,その間接的測定から未知関数の高分解能近似を復元する計算フレームワークを提案する。
特に、関心の関数をランダム場の実現としてモデル化するデータ駆動アプローチにより、信号の分解能を高める。
機能的主成分の疎表現を活用することにより,トレーニングセットのサイズを小さくすることができることを示す。
論文 参考訳(メタデータ) (2020-02-20T13:44:24Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
ジャンクションツリーアルゴリズムは、実行時の保証と正確なMAP推論のための最も一般的な解である。
本稿では,ノードのクローン化による新たなグラフ変換手法を提案する。
論文 参考訳(メタデータ) (2019-12-27T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。