Distributional bias compromises leave-one-out cross-validation
- URL: http://arxiv.org/abs/2406.01652v1
- Date: Mon, 3 Jun 2024 15:47:34 GMT
- Title: Distributional bias compromises leave-one-out cross-validation
- Authors: George I. Austin, Itsik Pe'er, Tal Korem,
- Abstract summary: Cross-validation is a common method for estimating the predictive performance of machine learning models.
We show that an approach called "leave-one-out cross-validation" creates a negative correlation between the average label of each training fold and the label of its corresponding test instance.
We propose a generalizable rebalanced cross-validation approach that corrects for distributional bias.
- Score: 0.6656737591902598
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cross-validation is a common method for estimating the predictive performance of machine learning models. In a data-scarce regime, where one typically wishes to maximize the number of instances used for training the model, an approach called "leave-one-out cross-validation" is often used. In this design, a separate model is built for predicting each data instance after training on all other instances. Since this results in a single test data point available per model trained, predictions are aggregated across the entire dataset to calculate common rank-based performance metrics such as the area under the receiver operating characteristic or precision-recall curves. In this work, we demonstrate that this approach creates a negative correlation between the average label of each training fold and the label of its corresponding test instance, a phenomenon that we term distributional bias. As machine learning models tend to regress to the mean of their training data, this distributional bias tends to negatively impact performance evaluation and hyperparameter optimization. We show that this effect generalizes to leave-P-out cross-validation and persists across a wide range of modeling and evaluation approaches, and that it can lead to a bias against stronger regularization. To address this, we propose a generalizable rebalanced cross-validation approach that corrects for distributional bias. We demonstrate that our approach improves cross-validation performance evaluation in synthetic simulations and in several published leave-one-out analyses.
Related papers
- Semi-supervised Learning For Robust Speech Evaluation [30.593420641501968]
Speech evaluation measures a learners oral proficiency using automatic models.
This paper proposes to address such challenges by exploiting semi-supervised pre-training and objective regularization.
An anchor model is trained using pseudo labels to predict the correctness of pronunciation.
arXiv Detail & Related papers (2024-09-23T02:11:24Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Bootstrapping the Cross-Validation Estimate [3.5159221757909656]
Cross-validation is a widely used technique for evaluating the performance of prediction models.
It is essential to accurately quantify the uncertainty associated with the estimate.
This paper proposes a fast bootstrap method that quickly estimates the standard error of the cross-validation estimate.
arXiv Detail & Related papers (2023-07-01T07:50:54Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - A Statistical Model for Predicting Generalization in Few-Shot
Classification [6.158812834002346]
We introduce a Gaussian model of the feature distribution to predict the generalization error.
We show that our approach outperforms alternatives such as the leave-one-out cross-validation strategy.
arXiv Detail & Related papers (2022-12-13T10:21:15Z) - Don't Discard All the Biased Instances: Investigating a Core Assumption
in Dataset Bias Mitigation Techniques [19.252319300590656]
Existing techniques for mitigating dataset bias often leverage a biased model to identify biased instances.
The role of these biased instances is then reduced during the training of the main model to enhance its robustness to out-of-distribution data.
In this paper, we show that this assumption does not hold in general.
arXiv Detail & Related papers (2021-09-01T10:25:46Z) - Cross-validation: what does it estimate and how well does it do it? [2.049702429898688]
Cross-validation is a widely-used technique to estimate prediction error, but its behavior is complex and not fully understood.
We prove that this is not the case for the linear model fit by ordinary least squares; rather it estimates the average prediction error of models fit on other unseen training sets drawn from the same population.
arXiv Detail & Related papers (2021-04-01T17:58:54Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition
from a Domain Adaptation Perspective [98.70226503904402]
Object frequency in the real world often follows a power law, leading to a mismatch between datasets with long-tailed class distributions.
We propose to augment the classic class-balanced learning by explicitly estimating the differences between the class-conditioned distributions with a meta-learning approach.
arXiv Detail & Related papers (2020-03-24T11:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.