論文の概要: Quantum optimization using a 127-qubit gate-model IBM quantum computer can outperform quantum annealers for nontrivial binary optimization problems
- arxiv url: http://arxiv.org/abs/2406.01743v1
- Date: Mon, 3 Jun 2024 19:08:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:02:09.594983
- Title: Quantum optimization using a 127-qubit gate-model IBM quantum computer can outperform quantum annealers for nontrivial binary optimization problems
- Title(参考訳): 127キュービットゲートモデルIBM量子コンピュータを用いた量子最適化は、非自明なバイナリ最適化問題に対して量子アニールより優れている。
- Authors: Natasha Sachdeva, Gavin S. Harnett, Smarak Maity, Samuel Marsh, Yulun Wang, Adam Winick, Ryan Dougherty, Daniel Canuto, You Quan Chong, Michael Hush, Pranav S. Mundada, Christopher D. B. Bentley, Michael J. Biercuk, Yuval Baum,
- Abstract要約: ゲートモデル量子コンピュータにおける二項最適化問題に対する量子解法を提案する。
最大127キュービットの問題の正しい解を一貫して提供する。
我々はこの解法をIBM量子コンピュータ上でベンチマークする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a comprehensive quantum solver for binary combinatorial optimization problems on gate-model quantum computers that outperforms any published alternative and consistently delivers correct solutions for problems with up to 127 qubits. We provide an overview of the internal workflow, describing the integration of a customized ansatz and variational parameter update strategy, efficient error suppression in hardware execution, and overhead-free post-processing to correct for bit-flip errors. We benchmark this solver on IBM quantum computers for several classically nontrivial unconstrained binary optimization problems -- the entire optimization is conducted on hardware with no use of classical simulation or prior knowledge of the solution. First, we demonstrate the ability to correctly solve Max-Cut instances for random regular graphs with a variety of densities using up to 120 qubits, where the graph topologies are not matched to device connectivity. Next, we apply the solver to higher-order binary optimization and successfully search for the ground state energy of a 127-qubit spin-glass model with linear, quadratic, and cubic interaction terms. Use of this new quantum solver increases the likelihood of finding the minimum energy by up to $\sim1,500\times$ relative to published results using a DWave annealer, and it can find the correct solution when the annealer fails. Furthermore, for both problem types, the Q-CTRL solver outperforms a heuristic local solver used to indicate the relative difficulty of the problems pursued. Overall, these results represent the largest quantum optimizations successfully solved on hardware to date, and demonstrate the first time a gate-model quantum computer has been able to outperform an annealer for a class of binary optimization problems.
- Abstract(参考訳): ゲートモデル量子コンピュータにおける二項組合せ最適化問題に対する包括的量子解法を導入する。
内部ワークフローの概要として、カスタマイズされたアンサッツと変分パラメータ更新戦略の統合、ハードウェア実行におけるエラーの効率的な抑制、ビットフリップエラーの修正のためのオーバーヘッドのない後処理について述べる。
我々は、この問題をIBMの量子コンピュータにベンチマークし、古典的な非自明なバイナリ最適化問題をいくつか行ない、古典的なシミュレーションやソリューションの事前知識を使わずに、ハードウェア上で最適化を行う。
まず、最大120キュービットの密度を持つランダムな正規グラフに対して、そのグラフトポロジがデバイス接続と一致しないようなランダムな正規グラフに対して、Max-Cutのインスタンスを正しく解く能力を示す。
次に, 線形, 二次, 立方体相互作用項を持つ127キュービットスピングラスモデルの高次二乗最適化に適用し, 基底状態エネルギーの探索に成功した。
この新しい量子解法は、DWaveアニールラーを用いて公表された結果と比較して最大$\sim1500\times$で最小エネルギーを見つける可能性を高め、アニールラーが故障した場合に正しい解を見つけることができる。
さらに、どちらの問題にも、Q-CTRLソルバは、追求された問題の相対的難易度を示すために用いられるヒューリスティック局所解器よりも優れる。
全体として、これらの結果はハードウェア上での解決に成功している最大の量子最適化であり、ゲートモデル量子コンピュータが二進最適化のクラスにおいてアニールを初めて上回ったことを実証している。
関連論文リスト
- Quantum Optimization for the Maximum Cut Problem on a Superconducting Quantum Computer [0.3518016233072556]
半定値アプローチに着想を得たハイブリッド量子古典アルゴリズムの性能について検討した。
何千もの問題インスタンスのランダムアンサンブルに対して平均99%のパフォーマンスを達成した。
実行時解析により、大規模問題における量子解法は、グロビと競合するが、他の問題には劣ることを示した。
論文 参考訳(メタデータ) (2024-04-26T17:59:22Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
我々は、$m=mathcalO(nk)$バイナリ変数を$n$ qubitsだけを使って最適化するために、$k>1$で可変量子ソルバを導入する。
我々は,特定の量子ビット効率の符号化が,バレン高原の超ポリノミウム緩和を内蔵特徴としてもたらすことを解析的に証明した。
論文 参考訳(メタデータ) (2024-01-17T18:59:38Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - NISQ-compatible approximate quantum algorithm for unconstrained and
constrained discrete optimization [0.0]
本稿では,振幅符号化を用いたハードウェア効率の高い回路に対する近似勾配型量子アルゴリズムを提案する。
目的関数にペナルティ項を加えることなく, 単純な線形制約を回路に直接組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-05-23T16:17:57Z) - Solving Larger Optimization Problems Using Parallel Quantum Annealing [0.0]
並列量子アニールとグラフ分解を組み合わせたハイブリッドアプローチにより、より大規模な最適化問題を正確に解けることを示す。
最大傾き問題を最大120ノードと6395エッジのグラフに適用する。
論文 参考訳(メタデータ) (2022-05-24T15:56:15Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Efficient Use of Quantum Linear System Algorithms in Interior Point
Methods for Linear Optimization [0.0]
線形最適化問題を解くために、非現実的な量子内点法を開発した。
また、量子ソルバの過度な時間なしで、反復リファインメントによって正確な解を得る方法についても論じる。
論文 参考訳(メタデータ) (2022-05-02T21:30:56Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
分割・対数手法を用いて、元の問題を小さな問題の集合に還元する。
この手法は任意のQUBOインスタンスに適用でき、全古典的またはハイブリッドな量子古典的アプローチにつながる。
論文 参考訳(メタデータ) (2021-01-19T19:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。