論文の概要: Recent Advances in Data-Driven Business Process Management
- arxiv url: http://arxiv.org/abs/2406.01786v1
- Date: Mon, 3 Jun 2024 21:05:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:52:25.153679
- Title: Recent Advances in Data-Driven Business Process Management
- Title(参考訳): データ駆動型ビジネスプロセス管理の最近の進歩
- Authors: Lars Ackermann, Martin Käppel, Laura Marcus, Linda Moder, Sebastian Dunzer, Markus Hornsteiner, Annina Liessmann, Yorck Zisgen, Philip Empl, Lukas-Valentin Herm, Nicolas Neis, Julian Neuberger, Leo Poss, Myriam Schaschek, Sven Weinzierl, Niklas Wördehoff, Stefan Jablonski, Agnes Koschmider, Wolfgang Kratsch, Martin Matzner, Stefanie Rinderle-Ma, Maximilian Röglinger, Stefan Schönig, Axel Winkelmann,
- Abstract要約: 最先端技術の急速な発展は、データベースの管理と意思決定のパラダイムシフトにつながった。
データ駆動型ビジネスプロセス管理は、関連性があり活気ある研究領域になっている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid development of cutting-edge technologies, the increasing volume of data and also the availability and processability of new types of data sources has led to a paradigm shift in data-based management and decision-making. Since business processes are at the core of organizational work, these developments heavily impact BPM as a crucial success factor for organizations. In view of this emerging potential, data-driven business process management has become a relevant and vibrant research area. Given the complexity and interdisciplinarity of the research field, this position paper therefore presents research insights regarding data-driven BPM.
- Abstract(参考訳): 最先端技術の急速な発展、データ量の増大、新しいタイプのデータソースの可用性と処理性は、データベースの管理と意思決定のパラダイムシフトにつながった。
ビジネスプロセスは組織作業の中核にあるので、これらの開発は組織にとって重要な成功要因としてBPMに大きな影響を与えます。
この新たな可能性を考えると、データ駆動型ビジネスプロセス管理は、関連性があり活気ある研究領域となっている。
研究分野の複雑さと学際性を考えると、このポジション・ペーパーはデータ駆動型BPMに関する研究知見を提示する。
関連論文リスト
- A Systematic Review of Business Process Improvement: Achievements and Potentials in Combining Concepts from Operations Research and Business Process Management [0.0]
ビジネスプロセスマネジメントと運用リサーチは、組織における価値創造を強化することを目的としています。
この体系的な文献レビューは、両方の分野から組み合わせた概念を用いた作品を特定し分析する。
その結果,資源配分とスケジューリングの問題に強い焦点が当てられている。
論文 参考訳(メタデータ) (2024-09-02T14:13:14Z) - A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches) [4.499009117849108]
我々は、ビジネスプロセス管理におけるAI/MLの統合を検討するため、学術文献の体系的なレビューを行う。
ビジネスプロセス管理とプロセスマップでは、AI/MLはプロセスメトリクスの運用データを使用して大幅に改善されている。
論文 参考訳(メタデータ) (2024-07-07T18:26:00Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - Data Management For Training Large Language Models: A Survey [64.18200694790787]
大規模言語モデル(LLM)のトレーニングにおいて、データは基本的な役割を果たす
本調査は,LLMの事前学習および微調整段階におけるデータ管理の現状を概観するものである。
論文 参考訳(メタデータ) (2023-12-04T07:42:16Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - A Survey of Data Marketplaces and Their Business Models [0.0]
「データ」は、土地、インフラ、労働、資本と同様に、必要不可欠な生産要素になりつつある。
特定の機能を自動化することから、データ駆動型組織における意思決定を促進することに至るまで、タスクは、ますますサードパーティからのデータインプットを取得することの恩恵を受けています。
新しいエンティティや新しいビジネスモデルは、そのようなデータ要求を適切なプロバイダと一致させることを目的として現れています。
論文 参考訳(メタデータ) (2022-01-11T12:27:37Z) - Scaling up Search Engine Audits: Practical Insights for Algorithm
Auditing [68.8204255655161]
異なる地域に数百の仮想エージェントを配置した8つの検索エンジンの実験を行った。
複数のデータ収集にまたがる研究インフラの性能を実証する。
仮想エージェントは,アルゴリズムの性能を長時間にわたって監視するための,有望な場所である,と結論付けている。
論文 参考訳(メタデータ) (2021-06-10T15:49:58Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z) - Towards an Integrated Platform for Big Data Analysis [4.5257812998381315]
本稿では,これらすべての側面を統合した,ビッグデータ解析のための統合型プレート形式のビジョンについて述べる。
このアプローチの主な利点は、プラットフォーム全体の拡張スケーラビリティ、アルゴリズムのパラメータ化の改善、エンドツーエンドのデータ分析プロセスにおけるユーザビリティの改善である。
論文 参考訳(メタデータ) (2020-04-27T03:15:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。