論文の概要: A Survey of Data Marketplaces and Their Business Models
- arxiv url: http://arxiv.org/abs/2201.04561v1
- Date: Tue, 11 Jan 2022 12:27:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-01 12:46:15.916176
- Title: A Survey of Data Marketplaces and Their Business Models
- Title(参考訳): データマーケットプレースとそのビジネスモデルに関する調査
- Authors: Santiago Andr\'es Azcoitia and Nikolaos Laoutaris
- Abstract要約: 「データ」は、土地、インフラ、労働、資本と同様に、必要不可欠な生産要素になりつつある。
特定の機能を自動化することから、データ駆動型組織における意思決定を促進することに至るまで、タスクは、ますますサードパーティからのデータインプットを取得することの恩恵を受けています。
新しいエンティティや新しいビジネスモデルは、そのようなデータ要求を適切なプロバイダと一致させることを目的として現れています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: "Data" is becoming an indispensable production factor, just like land,
infrastructure, labor or capital. As part of this, a myriad of applications in
different sectors require huge amounts of information to feed models and
algorithms responsible for critical roles in production chains and business
processes. Tasks ranging from automating certain functions to facilitating
decision-making in data-driven organizations increasingly benefit from
acquiring data inputs from third parties. Responding to this demand, new
entities and novel business models have appeared with the aim of matching such
data requirements with the right providers and facilitating the exchange of
information. In this paper, we present the results and conclusions of a
comprehensive survey on the state of the art of entities trading data on the
internet, as well as novel data marketplace designs from the research
community.
- Abstract(参考訳): 「データは、土地、インフラ、労働、資本のように、必要不可欠な生産要素になりつつある。
これの一環として、さまざまな分野の無数のアプリケーションが、生産チェーンやビジネスプロセスにおいて重要な役割を担うモデルやアルゴリズムを供給するために、膨大な量の情報を必要とします。
特定の機能の自動化から、データ駆動型組織における意思決定の促進に至るまで、サードパーティからのデータインプットを取得することのメリットはますます増えています。
この要求に応えて、データ要求を適切なプロバイダと一致させ、情報の交換を容易にすることを目的として、新しいエンティティと新しいビジネスモデルが登場した。
本稿では,インターネット上でデータ取引を行う企業の現状に関する包括的調査の結果と結論と,研究コミュニティによる新たなデータマーケットプレースの設計について述べる。
関連論文リスト
- A Survey on Data Markets [73.07800441775814]
より大きな福祉のためのトレーディングデータの増加は、データ市場の台頭につながっている。
データ市場とは、データセットやデータデリバティブを含むデータプロダクトの交換が行われるメカニズムである。
これは、価格やデータの分散など、いくつかの機能が相互作用するコーディネートメカニズムとして機能する。
論文 参考訳(メタデータ) (2024-11-09T15:09:24Z) - Blockchain-Enabled Accountability in Data Supply Chain: A Data Bill of Materials Approach [16.31469678670097]
データ請求書(Data Bill of Materials, DataBOM)は、特定のメタデータを格納することで、異なるデータセットと利害関係者間の依存関係関係をキャプチャする。
ブロックチェーンベースのDataBOMサービスを提供するためのプラットフォームアーキテクチャを実証し、利害関係者のためのインタラクションプロトコルを提示し、DataBOMメタデータの最小要件について議論する。
論文 参考訳(メタデータ) (2024-08-16T05:34:50Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
まず、現在のデータマーケットプレースを調査し、データセットに関する詳細な情報を提供するプラットフォームが不足していることを明らかにする。
次に、データプロバイダと取得者間のインタラクションをモデル化するベンチマークであるDAMチャレンジを紹介します。
提案手法の評価は,機械学習における効果的なデータ取得戦略の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-22T22:15:17Z) - A Survey of Data Pricing for Data Marketplaces [77.3189288320768]
本稿では,既存のデータ価格研究の現状を概観する。
我々の重要な貢献は、データ価格を決定する異なる属性を統一するデータ価格研究の新しい分類である。
論文 参考訳(メタデータ) (2023-03-07T04:35:56Z) - Data Cards: Purposeful and Transparent Dataset Documentation for
Responsible AI [0.0]
我々は、データセットの透明性、目的、人間中心のドキュメンテーションを促進するためのデータカードを提案する。
データカードは、利害関係者が必要とするMLデータセットのさまざまな側面に関する重要な事実の要約である。
実世界のユーティリティと人間中心性にデータカードを基盤とするフレームワークを提示する。
論文 参考訳(メタデータ) (2022-04-03T13:49:36Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
私たちは、私たちの知る限り、最初のオープンソースのシミュレーションプラットフォームであるOpen SOUrce Market Simulator(OSOUM)を提供して、トレーディング市場、特にデータ市場を分析します。
我々は、購入に利用可能なさまざまなデータセットを所有する売り手と、購入に有効な適切なデータセットを検索する買い手という2つのタイプのエージェントからなる、特定のデータ市場モデルを記述し、実装する。
データ市場を扱うための商用フレームワークはすでに存在していますが、購入者および販売者の両方が(データ)市場に参加することの可能な振る舞いをシミュレートするための、自由で広範なエンドツーエンドの研究ツールを提供しています。
論文 参考訳(メタデータ) (2021-02-18T09:20:26Z) - Ensuring the Robustness and Reliability of Data-Driven Knowledge
Discovery Models in Production and Manufacturing [0.0]
データマイニングのクロス産業標準プロセス(CRISP-DM)は、データおよびモデル関連の問題に対処するために設計された。
本稿では、CRISP-DMモデルの拡張と、機械学習における各種データロバストネスおよびモデル-ロバストネス関連問題について概説する。
論文 参考訳(メタデータ) (2020-07-28T14:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。