論文の概要: A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches)
- arxiv url: http://arxiv.org/abs/2407.11043v1
- Date: Sun, 7 Jul 2024 18:26:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:09:54.871621
- Title: A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches)
- Title(参考訳): 予測型ビジネスプロセス管理におけるAIと機械学習の貢献(プロセスの強化とプロセス改善のアプローチ)
- Authors: Mostafa Abbasi, Rahnuma Islam Nishat, Corey Bond, John Brandon Graham-Knight, Patricia Lasserre, Yves Lucet, Homayoun Najjaran,
- Abstract要約: 我々は、ビジネスプロセス管理におけるAI/MLの統合を検討するため、学術文献の体系的なレビューを行う。
ビジネスプロセス管理とプロセスマップでは、AI/MLはプロセスメトリクスの運用データを使用して大幅に改善されている。
- 参考スコア(独自算出の注目度): 4.499009117849108
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Purpose- The significance of business processes has fostered a close collaboration between academia and industry. Moreover, the business landscape has witnessed continuous transformation, closely intertwined with technological advancements. Our main goal is to offer researchers and process analysts insights into the latest developments concerning Artificial Intelligence (AI) and Machine Learning (ML) to optimize their processes in an organization and identify research gaps and future directions in the field. Design/methodology/approach- In this study, we perform a systematic review of academic literature to investigate the integration of AI/ML in business process management (BPM). We categorize the literature according to the BPM life-cycle and employ bibliometric and objective-oriented methodology, to analyze related papers. Findings- In business process management and process map, AI/ML has made significant improvements using operational data on process metrics. These developments involve two distinct stages: (1) process enhancement, which emphasizes analyzing process information and adding descriptions to process models, and (2) process improvement, which focuses on redesigning processes based on insights derived from analysis. Research limitations/implications- While this review paper serves to provide an overview of different approaches for addressing process-related challenges, it does not delve deeply into the intricacies of fine-grained technical details of each method. This work focuses on recent papers conducted between 2010 and 2024. Originality/value- This paper adopts a pioneering approach by conducting an extensive examination of the integration of AI/ML techniques across the entire process management lifecycle. Additionally, it presents groundbreaking research and introduces AI/ML-enabled integrated tools, further enhancing the insights for future research.
- Abstract(参考訳): 目的- ビジネスプロセスの重要性は、学術と産業の密接な連携を育んでいる。
さらに、ビジネスの状況は継続的な変革を目撃し、技術的進歩と密接に絡み合っている。
私たちの主な目標は、人工知能(AI)と機械学習(ML)に関する最新の開発に関する研究者とプロセスアナリストの洞察を提供することで、組織におけるプロセスの最適化と、この分野における研究ギャップと今後の方向性の特定です。
本稿では,ビジネスプロセス管理(BPM)におけるAI/MLの統合を検討するため,学術文献の体系的なレビューを行う。
我々は、文献をBPMライフサイクルに従って分類し、書誌的かつ客観的な方法論を用いて関連論文を分析します。
発見- ビジネスプロセス管理とプロセスマップにおいて、AI/MLはプロセスメトリクスの運用データを使用して大幅に改善しました。
これらの開発には、(1)プロセス情報の分析を重視し、プロセスモデルに記述を追加するプロセス強化と、(2)分析から派生した洞察に基づくプロセスの再設計に焦点を当てたプロセス改善の2つの段階が含まれる。
研究の限界/影響-プロセス関連の課題に対処するための様々なアプローチの概要を提供するのに役立ちながら、各手法の詳細な技術的詳細を深く掘り下げることはできない。
この研究は2010年から2024年にかけて行われた最近の論文に焦点を当てている。
本稿では,プロセス管理ライフサイクル全体にわたってAI/ML技術の統合を徹底的に検討することにより,先駆的なアプローチを採用する。
さらに、画期的な研究を示し、AI/ML対応の統合ツールを導入し、将来の研究の洞察をさらに強化する。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - A Systematic Review of Business Process Improvement: Achievements and Potentials in Combining Concepts from Operations Research and Business Process Management [0.0]
ビジネスプロセスマネジメントと運用リサーチは、組織における価値創造を強化することを目的としています。
この体系的な文献レビューは、両方の分野から組み合わせた概念を用いた作品を特定し分析する。
その結果,資源配分とスケジューリングの問題に強い焦点が当てられている。
論文 参考訳(メタデータ) (2024-09-02T14:13:14Z) - Intelligent Cross-Organizational Process Mining: A Survey and New Perspectives [40.62773366902451]
本稿では,プロセスマイニングの分野に関する具体的な見解を提唱する。
まず、プロセスマイニングの枠組み、一般的な産業応用、そして人工知能と組み合わされた最新の進歩について要約する。
この視点は、複雑な多組織データ分析のための洗練されたソリューションを提供するために人工知能を活用することによって、プロセスマイニングに革命をもたらすことを目的としている。
論文 参考訳(メタデータ) (2024-07-15T23:30:34Z) - Revolutionizing Process Mining: A Novel Architecture for ChatGPT Integration and Enhanced User Experience through Optimized Prompt Engineering [2.4578723416255754]
本研究では,ChatGPTなどの大規模言語モデル(LLM)をプロセスマイニングツールに統合することで,新たなアプローチを提案する。
この研究の重要な革新は、各プロセスマイニングサブモジュール用に調整された迅速なエンジニアリング戦略を開発することである。
このアプローチの有効性を検証するために、研究者らは、BehfaLabのプロセスマイニングツールを使用している17社のデータを使用した。
論文 参考訳(メタデータ) (2024-05-17T10:48:14Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
本稿では,タスク自動化の体系的アプローチである計算管理を紹介する。
この記事では、ワークフロー内でAIを実装するプロセスを開始するための、ステップバイステップの手順を3つ紹介する。
論文 参考訳(メタデータ) (2024-02-07T01:45:14Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - Automatic Discovery of Multi-perspective Process Model using
Reinforcement Learning [7.5989847759545155]
深層Q-Learningに基づく多視点プロセスモデルの自動発見フレームワークを提案する。
我々のDual Experience Replay with Experience Distribution(DERED)アプローチは、プロセスモデル発見ステップ、適合チェックステップ、拡張ステップを自動的に実行できます。
ポートロジスティクス、鉄鋼製造、金融、IT、政府管理で収集された6つの実世界のイベントデータセットを用いて、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2022-11-30T02:18:29Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
機械学習(ML)アプローチのようなデータ駆動の手法は、大きな設計空間を合理的に探索する可能性が高い。
本研究の目的は,これまでのバイオプロセス開発におけるML手法の適用例を示すことである。
論文 参考訳(メタデータ) (2022-10-04T13:48:59Z) - Towards Automated Process Planning and Mining [77.34726150561087]
我々は、AIとBPM分野の研究者が共同で働く研究プロジェクトについて紹介する。
プロセスモデルを自動的に導出するための総合的な研究課題、研究の関連分野、および総合的な研究枠組みについて論じる。
論文 参考訳(メタデータ) (2022-08-18T16:41:22Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。