Deep asymmetric mixture model for unsupervised cell segmentation
- URL: http://arxiv.org/abs/2406.01815v1
- Date: Mon, 3 Jun 2024 22:12:22 GMT
- Title: Deep asymmetric mixture model for unsupervised cell segmentation
- Authors: Yang Nan, Guang Yang,
- Abstract summary: This paper presents a novel asymmetric mixture model for unsupervised cell segmentation.
It is built by aggregating certain multivariate Gaussian mixture models with log-likelihood and self-supervised-based optimization functions.
The proposed asymmetric mixture model outperforms the existing state-of-the-art unsupervised models on cell segmentation including the segment anything.
- Score: 4.211173851121561
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automated cell segmentation has become increasingly crucial for disease diagnosis and drug discovery, as manual delineation is excessively laborious and subjective. To address this issue with limited manual annotation, researchers have developed semi/unsupervised segmentation approaches. Among these approaches, the Deep Gaussian mixture model plays a vital role due to its capacity to facilitate complex data distributions. However, these models assume that the data follows symmetric normal distributions, which is inapplicable for data that is asymmetrically distributed. These models also obstacles weak generalization capacity and are sensitive to outliers. To address these issues, this paper presents a novel asymmetric mixture model for unsupervised cell segmentation. This asymmetric mixture model is built by aggregating certain multivariate Gaussian mixture models with log-likelihood and self-supervised-based optimization functions. The proposed asymmetric mixture model outperforms (nearly 2-30% gain in dice coefficient, p<0.05) the existing state-of-the-art unsupervised models on cell segmentation including the segment anything.
Related papers
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Approximation-Generalization Trade-offs under (Approximate) Group
Equivariance [3.0458514384586395]
Group equivariant neural networks have demonstrated impressive performance across various domains and applications such as protein and drug design.
We show how models capturing task-specific symmetries lead to improved generalization.
We examine the more general question of model mis-specification when the model symmetries don't align with the data symmetries.
arXiv Detail & Related papers (2023-05-27T22:53:37Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - Convex Latent Effect Logit Model via Sparse and Low-rank Decomposition [2.1915057426589746]
We propose a convexparametric convexparametric formulation for learning logistic regression model (logit) with latent heterogeneous effect on sub-population.
Despite its popularity, the mixed logit approach for learning individual heterogeneity has several downsides.
arXiv Detail & Related papers (2021-08-22T22:23:39Z) - Vine copula mixture models and clustering for non-Gaussian data [0.0]
We propose a novel vine copula mixture model for continuous data.
We show that the model-based clustering algorithm with vine copula mixture models outperforms the other model-based clustering techniques.
arXiv Detail & Related papers (2021-02-05T16:04:26Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.