Fruit Classification System with Deep Learning and Neural Architecture Search
- URL: http://arxiv.org/abs/2406.01869v1
- Date: Tue, 4 Jun 2024 00:41:47 GMT
- Title: Fruit Classification System with Deep Learning and Neural Architecture Search
- Authors: Christine Dewi, Dhananjay Thiruvady, Nayyar Zaidi,
- Abstract summary: The study identified a total of 15 distinct categories of fruit, consisting of class Avocado, Banana, Cherry, Apple Braeburn, Apple golden 1, Apricot, Grape, Kiwi, Mango, Orange, Papaya, Peach, Pineapple, Pomegranate and Strawberry.
Our suggested model with 99.98% mAP increased the detection performance of the preceding research study that used Fruit datasets.
- Score: 0.9217021281095907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fruit identification process involves analyzing and categorizing different types of fruits based on their visual characteristics. This activity can be achieved using a range of methodologies, encompassing manual examination, conventional computer vision methodologies, and more sophisticated methodologies employing machine learning and deep learning. Our study identified a total of 15 distinct categories of fruit, consisting of class Avocado, Banana, Cherry, Apple Braeburn, Apple golden 1, Apricot, Grape, Kiwi, Mango, Orange, Papaya, Peach, Pineapple, Pomegranate and Strawberry. Neural Architecture Search (NAS) is a technological advancement employed within the realm of deep learning and artificial intelligence, to automate conceptualizing and refining neural network topologies. NAS aims to identify neural network structures that are highly suitable for tasks, such as the detection of fruits. Our suggested model with 99.98% mAP increased the detection performance of the preceding research study that used Fruit datasets. In addition, after the completion of the study, a comparative analysis was carried out to assess the findings in conjunction with those of another research that is connected to the topic. When compared to the findings of earlier studies, the detector that was proposed exhibited higher performance in terms of both its accuracy and its precision.
Related papers
- Classifying Healthy and Defective Fruits with a Multi-Input Architecture and CNN Models [0.0]
The primary aim is to enhance the accuracy of CNN models.
Results reveal that the inclusion of silhouette images alongside the Multi-Input architecture yields models with superior performance.
arXiv Detail & Related papers (2024-10-14T21:37:12Z) - MetaFruit Meets Foundation Models: Leveraging a Comprehensive Multi-Fruit Dataset for Advancing Agricultural Foundation Models [10.11552909915055]
We introduce MetaFruit, the largest publicly available multi-class fruit dataset, comprising 4,248 images and 248,015 manually labeled instances.
This study proposes an innovative open-set fruit detection system leveraging advanced Vision Foundation Models (VFMs) for fruit detection.
arXiv Detail & Related papers (2024-05-14T00:13:47Z) - An Improved CNN-based Neural Network Model for Fruit Sugar Level Detection [24.07349410158827]
We design a regression model for fruit sugar level estimation using an Artificial Neural Network (ANN) based on the visible/near-infrared (V/NIR) spectra of fruits.
Using fruit sugar levels as the detection target, we collected data from two fruit types, Gan Nan Navel and Tian Shan Pear, and conducted experiments to compare their results.
arXiv Detail & Related papers (2023-11-18T17:07:25Z) - Fruit Ripeness Classification: a Survey [59.11160990637616]
Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded.
Machine learning and deep learning techniques dominate the top-performing methods.
Deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features.
arXiv Detail & Related papers (2022-12-29T19:32:20Z) - Fruit Quality Assessment with Densely Connected Convolutional Neural
Network [0.0]
We have exploited the concept of Densely Connected Convolutional Neural Networks (DenseNets) for fruit quality assessment.
The proposed pipeline achieved a remarkable accuracy of 99.67%.
The robustness of the model was further tested for fruit classification and quality assessment tasks where the model produced a similar performance.
arXiv Detail & Related papers (2022-12-08T13:11:47Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Facilitated machine learning for image-based fruit quality assessment in
developing countries [68.8204255655161]
Automated image classification is a common task for supervised machine learning in food science.
We propose an alternative method based on pre-trained vision transformers (ViTs)
It can be easily implemented with limited resources on a standard device.
arXiv Detail & Related papers (2022-07-10T19:52:20Z) - On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future [60.99717891994599]
We propose an approach that extracts information from neuroevolutionary runs, and use it to build a metamodel.
We inspect the best structures found during neuroevolutionary searches of generative adversarial networks with varying characteristics.
arXiv Detail & Related papers (2021-05-26T20:55:29Z) - Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep
Learning [14.853897011640022]
We present a system to measure the ripeness of fruit with a hyperspectral camera and a suitable deep neural network architecture.
This architecture did outperform competitive baseline models on the prediction of the state of ripeness.
arXiv Detail & Related papers (2021-04-20T07:43:19Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - Automatic Gesture Recognition in Robot-assisted Surgery with
Reinforcement Learning and Tree Search [63.07088785532908]
We propose a framework based on reinforcement learning and tree search for joint surgical gesture segmentation and classification.
Our framework consistently outperforms the existing methods on the suturing task of JIGSAWS dataset in terms of accuracy, edit score and F1 score.
arXiv Detail & Related papers (2020-02-20T13:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.