CNN-based solution for mango classification in agricultural environments
- URL: http://arxiv.org/abs/2507.23174v1
- Date: Thu, 31 Jul 2025 00:58:34 GMT
- Title: CNN-based solution for mango classification in agricultural environments
- Authors: Beatriz Díaz Peón, Jorge Torres Gómez, Ariel Fajardo Márquez,
- Abstract summary: This article exemplifies the design of a fruit detection and classification system using Convolutional Neural Networks (CNN)<n>The goal is to develop a system that automatically assesses fruit quality for farm inventory management.
- Score: 1.2248397169100782
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This article exemplifies the design of a fruit detection and classification system using Convolutional Neural Networks (CNN). The goal is to develop a system that automatically assesses fruit quality for farm inventory management. Specifically, a method for mango fruit classification was developed using image processing, ensuring both accuracy and efficiency. Resnet-18 was selected as the preliminary architecture for classification, while a cascade detector was used for detection, balancing execution speed and computational resource consumption. Detection and classification results were displayed through a graphical interface developed in MatLab App Designer, streamlining system interaction. The integration of convolutional neural networks and cascade detectors proffers a reliable solution for fruit classification and detection, with potential applications in agricultural quality control.
Related papers
- Automated Multi-Class Crop Pathology Classification via Convolutional Neural Networks: A Deep Learning Approach for Real-Time Precision Agriculture [0.0]
This research introduces a Convolutional Neural Network (CNN)-based image classification system designed to automate the detection and classification of eight common crop diseases.<n>The solution is deployed on an open-source, mobile-compatible platform, enabling real-time image-based diagnostics for farmers in remote areas.
arXiv Detail & Related papers (2025-07-12T18:45:50Z) - An Improved CNN-based Neural Network Model for Fruit Sugar Level Detection [24.07349410158827]
We design a regression model for fruit sugar level estimation using an Artificial Neural Network (ANN) based on the visible/near-infrared (V/NIR) spectra of fruits.
Using fruit sugar levels as the detection target, we collected data from two fruit types, Gan Nan Navel and Tian Shan Pear, and conducted experiments to compare their results.
arXiv Detail & Related papers (2023-11-18T17:07:25Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
arXiv Detail & Related papers (2023-07-14T14:36:58Z) - Fruit Quality Assessment with Densely Connected Convolutional Neural
Network [0.0]
We have exploited the concept of Densely Connected Convolutional Neural Networks (DenseNets) for fruit quality assessment.
The proposed pipeline achieved a remarkable accuracy of 99.67%.
The robustness of the model was further tested for fruit classification and quality assessment tasks where the model produced a similar performance.
arXiv Detail & Related papers (2022-12-08T13:11:47Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Facilitated machine learning for image-based fruit quality assessment in
developing countries [68.8204255655161]
Automated image classification is a common task for supervised machine learning in food science.
We propose an alternative method based on pre-trained vision transformers (ViTs)
It can be easily implemented with limited resources on a standard device.
arXiv Detail & Related papers (2022-07-10T19:52:20Z) - Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep
Learning [14.853897011640022]
We present a system to measure the ripeness of fruit with a hyperspectral camera and a suitable deep neural network architecture.
This architecture did outperform competitive baseline models on the prediction of the state of ripeness.
arXiv Detail & Related papers (2021-04-20T07:43:19Z) - Learning CNN filters from user-drawn image markers for coconut-tree
image classification [78.42152902652215]
We present a method that needs a minimal set of user-selected images to train the CNN's feature extractor.
The method learns the filters of each convolutional layer from user-drawn markers in image regions that discriminate classes.
It does not rely on optimization based on backpropagation, and we demonstrate its advantages on the binary classification of coconut-tree aerial images.
arXiv Detail & Related papers (2020-08-08T15:50:23Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
We present an efficient localization module that can be fused with a classification network in an end-to-end setup.
We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft.
arXiv Detail & Related papers (2020-05-11T14:07:06Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.