論文の概要: Position-based Rogue Access Point Detection
- arxiv url: http://arxiv.org/abs/2406.01927v1
- Date: Tue, 4 Jun 2024 03:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:03:31.049462
- Title: Position-based Rogue Access Point Detection
- Title(参考訳): 位置に基づくローグアクセスポイント検出
- Authors: Wenjie Liu, Panos Papadimitratos,
- Abstract要約: ローグWi-Fiアクセスポイント(AP)攻撃は、データ漏洩と不正アクセスにつながる可能性がある。
既存のローグAP検出法は、しばしばチャネル状態情報(CSI)または受信信号強度指標(RSSI)に依存する。
本稿では,異なるサブセットのAPを用いてローグAPを検出する手法を提案する。
- 参考スコア(独自算出の注目度): 1.9688858888666714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rogue Wi-Fi access point (AP) attacks can lead to data breaches and unauthorized access. Existing rogue AP detection methods and tools often rely on channel state information (CSI) or received signal strength indicator (RSSI), but they require specific hardware or achieve low detection accuracy. On the other hand, AP positions are typically fixed, and Wi-Fi can support indoor positioning of user devices. Based on this position information, the mobile platform can check if one (or more) AP in range is rogue. The inclusion of a rogue AP would in principle result in a wrong estimated position. Thus, the idea to use different subsets of APs: the positions computed based on subsets that include a rogue AP will be significantly different from those that do not. Our scheme contains two components: subset generation and position validation. First, we generate subsets of RSSIs from APs, which are then utilized for positioning, similar to receiver autonomous integrity monitoring (RAIM). Second, the position estimates, along with uncertainties, are combined into a Gaussian mixture, to check for inconsistencies by evaluating the overlap of the Gaussian components. Our comparative analysis, conducted on a real-world dataset with three types of attacks and synthetic RSSIs integrated, demonstrates a substantial improvement in rogue AP detection accuracy.
- Abstract(参考訳): ローグWi-Fiアクセスポイント(AP)攻撃は、データ漏洩と不正アクセスにつながる可能性がある。
既存のAP検出方法やツールはチャネル状態情報(CSI)や受信信号強度指標(RSSI)に頼っていることが多いが、特定のハードウェアを必要とするか、検出精度が低い。
一方、AP位置は通常固定されており、Wi-Fiはユーザーデバイスの屋内位置決めをサポートすることができる。
この位置情報に基づいて、モバイルプラットフォームは、1つ(またはそれ以上)のAPが不正であるかどうかをチェックすることができる。
ローグAPが組み込まれれば、原理的には間違った推定位置になる。
したがって、APの異なるサブセットを使用するという考え方は、ログAPを含むサブセットに基づいて計算された位置は、そうでないサブセットと大きく異なる。
我々のスキームは、サブセット生成と位置検証の2つのコンポーネントを含む。
まず、APからRSSIのサブセットを生成し、そのサブセットを位置決めに利用する。
第二に、位置推定は不確実性とともにガウス混合に組み合わされ、ガウス成分の重複を評価することによって不整合をチェックする。
3種類の攻撃と合成RSSIを統合した実世界のデータセットを用いて行った比較分析により,ログAP検出精度が大幅に向上したことを示す。
関連論文リスト
- Extending RAIM with a Gaussian Mixture of Opportunistic Information [1.9688858888666714]
元の受信機自動整合性監視(RAIM)は安全のために設計されていない。
我々は、地上インフラや搭載センサーから得られるすべての機会情報、すなわち計測情報を組み込むことでRAIMを拡張した。
本研究の目的は,拡張RAIM溶液から得られる位置を解析し,スプーフィングの可能性を評価することである。
論文 参考訳(メタデータ) (2024-02-05T19:03:18Z) - Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection [76.5120397167247]
そこで我々は,Transformer-based detector DINO と接地事前学習を併用したオープンセット型物体検出器である Grounding DINO を提案する。
オープンセットオブジェクト検出の鍵となる解決策は、オープンセットの概念一般化のためのクローズドセット検出器に言語を導入することである。
DINOはCOCO、LVIS、ODinW、RefCOCO/+/gのベンチマークを含む3つの設定で非常によく機能する。
論文 参考訳(メタデータ) (2023-03-09T18:52:16Z) - Deep Attention Recognition for Attack Identification in 5G UAV
scenarios: Novel Architecture and End-to-End Evaluation [3.3253720226707992]
5Gフレームワークに固有の堅牢なセキュリティ機能にもかかわらず、攻撃者は依然として5G無人航空機(UAV)の運用を妨害する方法を見つけるだろう。
我々は,認証されたUAVに埋め込まれた小さなディープネットワークに基づく攻撃を識別するためのソリューションとして,Deep Attention Recognition (DAtR)を提案する。
論文 参考訳(メタデータ) (2023-03-03T17:10:35Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Disentangle Your Dense Object Detector [82.22771433419727]
深層学習に基づく高密度物体検出器はここ数年で大きな成功を収め、ビデオ理解などのマルチメディアアプリケーションにも応用されてきた。
しかし、現在の高密度検出器の訓練パイプラインは、保持できない多くの接続に妥協されている。
そこで本研究では, 簡易かつ効果的な遠心分離機構を設計し, 現在の最先端検出器に統合するDED(Disentangled Dense Object Detector)を提案する。
論文 参考訳(メタデータ) (2021-07-07T00:52:16Z) - Immediate Proximity Detection Using Wi-Fi-Enabled Smartphones [1.3706331473063877]
本稿では,2つのWi-Fi対応デバイスが物理的に近接しているかどうかを検知する新しい手法を提案する。
我々の目標は、スマートフォンによる露出通知と接触追跡システムの精度を高めることである。
論文 参考訳(メタデータ) (2021-06-05T02:17:01Z) - Evaluating Large-Vocabulary Object Detectors: The Devil is in the
Details [107.2722027807328]
我々は、APのデフォルト実装はカテゴリー独立ではなく、適切に校正された検出器を直接報酬するものではないことを発見した。
既定の実装ではゲーム可能なメトリックが生成され、単純で非合理的な再ランクポリシーがAPを大きなマージンで改善できることが示される。
我々は,近年の大規模語彙検出の進歩をベンチマークし,新たなクラスごとの独立性評価において,多くの報告された利益が改善に結びついていないことを発見した。
論文 参考訳(メタデータ) (2021-02-01T18:56:02Z) - Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles [5.579370215490055]
我々は,長期記憶(LSTM)モデルを用いた予測に基づくスプーフィング攻撃検出戦略を開発した。
現在の位置と直近の場所との間を走行する予測距離に基づいてしきい値を確立する。
分析の結果,予測に基づくスプーフ攻撃検出戦略により,リアルタイムで攻撃を検知できることが判明した。
論文 参考訳(メタデータ) (2020-10-16T18:26:59Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
一段階の物体検出器は、分類損失と局所化損失を同時に最適化することによって訓練される。
前者は、多数のアンカーのため、非常に前景と後方のアンカーの不均衡に悩まされる。
本稿では,一段検知器の分類タスクをランキングタスクに置き換える新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-08-17T13:22:01Z) - Corner Proposal Network for Anchor-free, Two-stage Object Detection [174.59360147041673]
オブジェクト検出の目標は、画像内のオブジェクトのクラスと位置を決定することである。
本稿では,多数のオブジェクト提案を抽出する新しいアンカーフリー2段階フレームワークを提案する。
この2つの段階が,リコールと精度の向上に有効な解であることを示す。
論文 参考訳(メタデータ) (2020-07-27T19:04:57Z) - Seeing without Looking: Contextual Rescoring of Object Detections for AP
Maximization [4.346179456029563]
任意の検出器の出力を後処理することで、コンテキストをオブジェクト検出に組み込むことを提案する。
再現は、検出の集合全体からコンテキスト情報を条件付けすることで行われる。
検出信頼度を簡易に再割り当てすることでAPを改善できることを示す。
論文 参考訳(メタデータ) (2019-12-27T18:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。