論文の概要: Understanding Auditory Evoked Brain Signal via Physics-informed Embedding Network with Multi-Task Transformer
- arxiv url: http://arxiv.org/abs/2406.02014v1
- Date: Tue, 4 Jun 2024 06:53:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 17:40:41.962286
- Title: Understanding Auditory Evoked Brain Signal via Physics-informed Embedding Network with Multi-Task Transformer
- Title(参考訳): 物理インフォームド・エンベディングネットワークを用いたマルチタスク変換器を用いた聴覚誘発脳信号の理解
- Authors: Wanli Ma, Xuegang Tang, Jin Gu, Ying Wang, Yuling Xia,
- Abstract要約: マルチタスク変換器(PEMT-Net)を用いた物理インフォームド・エンベディング・ネットワークという,革新的なマルチタスク学習モデルを提案する。
PEMT-Netは物理インフォームド埋め込みとディープラーニング技術によりデコード性能を向上させる。
特定のデータセットに対する実験は、PEMT-Netがマルチタスクの聴覚信号復号における顕著な性能を示した。
- 参考スコア(独自算出の注目度): 3.261870217889503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the fields of brain-computer interaction and cognitive neuroscience, effective decoding of auditory signals from task-based functional magnetic resonance imaging (fMRI) is key to understanding how the brain processes complex auditory information. Although existing methods have enhanced decoding capabilities, limitations remain in information utilization and model representation. To overcome these challenges, we propose an innovative multi-task learning model, Physics-informed Embedding Network with Multi-Task Transformer (PEMT-Net), which enhances decoding performance through physics-informed embedding and deep learning techniques. PEMT-Net consists of two principal components: feature augmentation and classification. For feature augmentation, we propose a novel approach by creating neural embedding graphs via node embedding, utilizing random walks to simulate the physical diffusion of neural information. This method captures both local and non-local information overflow and proposes a position encoding based on relative physical coordinates. In the classification segment, we propose adaptive embedding fusion to maximally capture linear and non-linear characteristics. Furthermore, we propose an innovative parameter-sharing mechanism to optimize the retention and learning of extracted features. Experiments on a specific dataset demonstrate PEMT-Net's significant performance in multi-task auditory signal decoding, surpassing existing methods and offering new insights into the brain's mechanisms for processing complex auditory information.
- Abstract(参考訳): 脳とコンピュータの相互作用と認知神経科学の分野では、タスクベースの機能的磁気共鳴画像(fMRI)から聴覚信号の効果的な復号化が、脳が複雑な聴覚情報をどのように処理するかを理解する鍵となる。
既存の手法ではデコード機能が強化されているが、情報利用やモデル表現に制限が残っている。
これらの課題を克服するために,本研究では,物理インフォームド埋め込みと深層学習によるデコード性能を向上させる,革新的なマルチタスク学習モデルであるPhysor-informed Embedding Network with Multi-Task Transformer (PEMT-Net)を提案する。
PEMT-Netは機能拡張と分類の2つの主要コンポーネントで構成されている。
機能拡張のために,ノード埋め込みによるニューラル埋め込みグラフを作成し,ランダムウォークを利用してニューラルネットワークの物理的拡散をシミュレートする手法を提案する。
本手法は,局所的および非局所的な情報オーバーフローを捕捉し,相対的な物理座標に基づく位置符号化を提案する。
分類セグメントでは,線形および非線形特性を最大に捉えるために,適応的な埋め込み融合を提案する。
さらに,抽出した特徴の保持と学習を最適化する,革新的なパラメータ共有機構を提案する。
特定のデータセットの実験では、PEMT-Netがマルチタスクの聴覚信号デコードにおいて重要なパフォーマンスを示し、既存の手法を超越し、複雑な聴覚情報を処理する脳のメカニズムに関する新たな洞察を提供する。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
運動画像(MI)と運動実行(ME)タスクのためのスパースマルチタスク学習フレームワークを提案する。
MI-ME分類のためのデュアルタスクCNNモデルが与えられた場合、過渡的な接続に対して、サリエンシに基づくスペーシフィケーションアプローチを適用する。
以上の結果から, この調整された疎水性は, 過度に適合する問題を緩和し, 少ないデータ量でテスト性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T09:06:16Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Neuromorphic Auditory Perception by Neural Spiketrum [27.871072042280712]
本研究では、時間変化のアナログ信号を効率的なスパイクパターンに変換するために、スパイク時相と呼ばれるニューラルスパイク符号化モデルを導入する。
このモデルは、様々な聴覚知覚タスクにおいて、スパイクニューラルネットワークのトレーニングを容易にする、正確に制御可能なスパイクレートを備えたスパースで効率的な符号化スキームを提供する。
論文 参考訳(メタデータ) (2023-09-11T13:06:19Z) - Dynamic Encoding and Decoding of Information for Split Learning in
Mobile-Edge Computing: Leveraging Information Bottleneck Theory [1.1151919978983582]
Split Learning(スプリットラーニング)は、MLモデルを2つの部分(エンコーダとデコーダ)に分割する、プライバシ保護の分散学習パラダイムである。
モバイルエッジコンピューティングでは、エンコーダがユーザ機器(UE)に、デコーダがエッジネットワークに、分割学習によってネットワーク機能を訓練することができる。
本稿では,送信リソース消費の動的バランスと,共有潜在表現の情報化を両立させるためのフレームワークとトレーニング機構を提案する。
論文 参考訳(メタデータ) (2023-09-06T07:04:37Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
本稿では,様々な認知タスクを行う単純な人工ニューラルネットワークが採用する情報処理戦略について検討する。
結果は、ニューラルネットワークが複数の多様なタスクを学習するにつれて、シナジーが増加することを示している。
トレーニング中に無作為にニューロンを停止させると、ネットワークの冗長性が増加し、ロバスト性の増加に対応する。
論文 参考訳(メタデータ) (2022-10-06T15:36:27Z) - Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining [24.641328814546842]
本稿では、フーリエ領域におけるマスク付き自己エンコーディングに基づく神経信号の自己教師付き事前学習フレームワークであるNeuro-BERTを提案する。
本稿では、入力信号の一部をランダムにマスキングし、欠落した情報を予測するFourier Inversion Prediction (FIP)と呼ばれる新しい事前学習タスクを提案する。
提案手法をいくつかのベンチマークデータセットで評価することにより,Neuro-BERTは下流神経関連タスクを大きなマージンで改善することを示す。
論文 参考訳(メタデータ) (2022-04-20T16:48:18Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Triple Memory Networks: a Brain-Inspired Method for Continual Learning [35.40452724755021]
ニューラルネットワークは、新しいタスクを学ぶ際にパラメータを調整するが、古いタスクをうまく実行できない。
脳は破滅的な干渉なしに新しい経験を継続的に学習する能力を持っている。
このような脳戦略に触発されて、連続学習のための三重記憶ネットワーク(TMN)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-03-06T11:35:24Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
マルチリニア圧縮学習(MCL)フレームワークは、マルチリニア圧縮センシングと機械学習をエンドツーエンドシステムに統合する。
MCLの背後にある主要なアイデアは、下流学習タスクの信号から重要な特徴を捉えることのできるテンソル部分空間の存在を仮定することである。
本稿では、上記の要件、すなわち、関心の信号が分離可能なテンソル部分空間をどうやって見つけるかという、2つの要件に対処する新しい解決策を提案する。
論文 参考訳(メタデータ) (2020-02-17T19:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。