論文の概要: Causal Effect Identification in LiNGAM Models with Latent Confounders
- arxiv url: http://arxiv.org/abs/2406.02049v1
- Date: Tue, 4 Jun 2024 07:30:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 17:30:56.902824
- Title: Causal Effect Identification in LiNGAM Models with Latent Confounders
- Title(参考訳): 潜在共同設立者のLiNGAMモデルにおける因果関係の同定
- Authors: Daniele Tramontano, Yaroslav Kivva, Saber Salehkaleybar, Mathias Drton, Negar Kiyavash,
- Abstract要約: 線形非ガウス非環モデル (LiNGAM) における因果効果の一般同定可能性について検討した。
観察された変数間の直接因果効果や全因果効果の完全なグラフィカルな特徴付けを提供する。
- 参考スコア(独自算出の注目度): 20.751445296400316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the generic identifiability of causal effects in linear non-Gaussian acyclic models (LiNGAM) with latent variables. We consider the problem in two main settings: When the causal graph is known a priori, and when it is unknown. In both settings, we provide a complete graphical characterization of the identifiable direct or total causal effects among observed variables. Moreover, we propose efficient algorithms to certify the graphical conditions. Finally, we propose an adaptation of the reconstruction independent component analysis (RICA) algorithm that estimates the causal effects from the observational data given the causal graph. Experimental results show the effectiveness of the proposed method in estimating the causal effects.
- Abstract(参考訳): 線形非ガウス非環モデル (LiNGAM) における因果効果の一般同定可能性について検討した。
因果グラフが先入観であることと、それが未知であることの2つの主要な設定でこの問題を考察する。
いずれの設定においても、観察変数間の直接因果効果や全因果効果の完全なグラフィカルな特徴を提供する。
さらに,グラフィカルな条件を認証するための効率的なアルゴリズムを提案する。
最後に、その因果グラフから因果効果を推定する再構成独立成分分析(RICA)アルゴリズムの適応性を提案する。
実験結果から, 因果効果を推定するための提案手法の有効性が示された。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding [1.6932009464531739]
我々は,線形非ガウス構造方程式モデルについて考察する。
この設定では、因果構造は特定可能であるが、一般に、特定の因果効果を識別することはできない。
論文 参考訳(メタデータ) (2024-08-09T07:24:12Z) - Parameter identification in linear non-Gaussian causal models under general confounding [8.273471398838533]
このようなモデルが潜伏変数を含む場合の線形係数の同定について検討する。
我々の主な成果は、直接的な因果効果の一般的な識別可能性を決定するのに必要かつ十分であるグラフィカルな基準である。
同定結果に基づいて推定を報告し、フィードバックループを持つモデルへの一般化を探索し、因果グラフの識別可能性に関する新たな結果を提供する。
論文 参考訳(メタデータ) (2024-05-31T14:39:14Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Semiparametric Inference For Causal Effects In Graphical Models With
Hidden Variables [13.299431908881425]
隠れ変数有向非巡回グラフに関連する因果モデルにおける因果効果の同定理論をよく研究した。
対応するアルゴリズムは、出力する関数を推定する複雑さのために、過小評価される。
単一処理と単一結果を含む集団レベルの因果効果の同定と推定のギャップを橋渡しする。
論文 参考訳(メタデータ) (2020-03-27T22:29:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。