論文の概要: Multi-target stain normalization for histology slides
- arxiv url: http://arxiv.org/abs/2406.02077v3
- Date: Mon, 10 Jun 2024 07:49:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 23:15:47.834935
- Title: Multi-target stain normalization for histology slides
- Title(参考訳): 組織スライドのマルチターゲット染色正規化
- Authors: Desislav Ivanov, Carlo Alberto Barbano, Marco Grangetto,
- Abstract要約: 我々は,複数の参照画像を活用する新しい手法を導入し,染色変化に対する堅牢性を高める。
提案手法はパラメータフリーであり,有意な変化のない既存の計算病理パイプラインに適用可能である。
- 参考スコア(独自算出の注目度): 6.820595748010971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional staining normalization approaches, e.g. Macenko, typically rely on the choice of a single representative reference image, which may not adequately account for the diverse staining patterns of datasets collected in practical scenarios. In this study, we introduce a novel approach that leverages multiple reference images to enhance robustness against stain variation. Our method is parameter-free and can be adopted in existing computational pathology pipelines with no significant changes. We evaluate the effectiveness of our method through experiments using a deep-learning pipeline for automatic nuclei segmentation on colorectal images. Our results show that by leveraging multiple reference images, better results can be achieved when generalizing to external data, where the staining can widely differ from the training set.
- Abstract(参考訳): 従来の染色正規化アプローチ(例: Macenko)は、一般的に単一の代表参照イメージの選択に依存しており、実用的なシナリオで収集されたデータセットの多様な染色パターンを適切に考慮していない可能性がある。
本研究では,複数の参照画像を利用して,染色変化に対するロバスト性を高める手法を提案する。
提案手法はパラメータフリーであり,有意な変化のない既存の計算病理パイプラインに適用可能である。
本手法の有効性を,深層学習パイプラインを用いた大腸画像の自動分割実験により評価した。
以上の結果から,複数の参照画像を活用することにより,外部データへの一般化において,染色がトレーニングセットと大きく異なる場合において,より優れた結果が得られることが示された。
関連論文リスト
- Assessing Image Inpainting via Re-Inpainting Self-Consistency Evaluation [46.974439781041774]
本稿では,複数の再塗装パスに基づく自己教師付きメトリックを利用する,革新的な評価パラダイムを提案する。
このアプローチは、様々な実行可能なインペイントソリューションの探索を可能にするための自己整合性の原則を強調している。
論文 参考訳(メタデータ) (2024-05-25T15:05:08Z) - Multi-domain stain normalization for digital pathology: A
cycle-consistent adversarial network for whole slide images [0.0]
本稿では,CycleGANに基づく染色正規化のためのマルチドメインアプローチであるMultiStain-CycleGANを提案する。
CycleGANの変更により、異なるモデルを再トレーニングしたり使用したりすることなく、異なる起源の画像の正規化が可能になります。
論文 参考訳(メタデータ) (2023-01-23T13:34:49Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - HistoStarGAN: A Unified Approach to Stain Normalisation, Stain Transfer
and Stain Invariant Segmentation in Renal Histopathology [0.5505634045241288]
HistoStarGANは、複数の染色間での染色を行う統一されたフレームワークである。
合成データジェネレータとして機能し、完全に注釈付けされた合成画像データの使用方法を舗装する。
論文 参考訳(メタデータ) (2022-10-18T12:22:26Z) - PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization [57.37911115888587]
正規化フローに基づく画像の逆問題に対する変分モデリングのための正規化器を提案する。
patchNRと呼ばれる我々の正規化器は、ごく少数の画像のパッチで学習したフローを正規化します。
論文 参考訳(メタデータ) (2022-05-24T12:14:26Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Generative Probabilistic Image Colorization [2.110198946293069]
本稿では,音の劣化の各ステップを逆転させる確率モデル列を訓練する拡散型生成法を提案する。
入力として線引き画像が与えられた場合、本手法は複数の候補色付き画像を提案する。
提案手法は,色条件の画像生成タスクだけでなく,実用的な画像補完や塗装タスクにも有効である。
論文 参考訳(メタデータ) (2021-09-29T16:10:12Z) - Structure-Preserving Multi-Domain Stain Color Augmentation using
Style-Transfer with Disentangled Representations [0.9051352746190446]
HistAuGANは、様々な現実的な組織学の染色色をシミュレートできるため、トレーニング中にニューラルネットワークの染色が不変になる。
画像から画像への変換のためのGAN(generative adversarial network)に基づいて,画像の内容,すなわち形態的組織構造を染色色属性から切り離す。
複数のドメインでトレーニングすることができるため、スライド作成および撮像プロセスで導入された他のドメイン固有のバリエーションと同様に、異なる染色色をカバーできることを学ぶことができる。
論文 参考訳(メタデータ) (2021-07-26T17:52:39Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Informative Sample Mining Network for Multi-Domain Image-to-Image
Translation [101.01649070998532]
本稿では,画像から画像への翻訳作業において,サンプル選択戦略の改善が有効であることを示す。
本稿では,サンプルの硬さを抑えつつ,サンプルの硬さを抑えるための新しい多段階サンプルトレーニング手法を提案する。
論文 参考訳(メタデータ) (2020-01-05T05:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。