UA-Track: Uncertainty-Aware End-to-End 3D Multi-Object Tracking
- URL: http://arxiv.org/abs/2406.02147v1
- Date: Tue, 4 Jun 2024 09:34:46 GMT
- Title: UA-Track: Uncertainty-Aware End-to-End 3D Multi-Object Tracking
- Authors: Lijun Zhou, Tao Tang, Pengkun Hao, Zihang He, Kalok Ho, Shuo Gu, Wenbo Hou, Zhihui Hao, Haiyang Sun, Kun Zhan, Peng Jia, Xianpeng Lang, Xiaodan Liang,
- Abstract summary: 3D multiple object tracking (MOT) plays a crucial role in autonomous driving perception.
Recent end-to-end query-based trackers simultaneously detect and track objects, which have shown promising potential for the 3D MOT task.
Existing methods overlook the uncertainty issue, which refers to the lack of precise confidence about the state and location of tracked objects.
We propose an Uncertainty-Aware 3D MOT framework, UA-Track, which tackles the uncertainty problem from multiple aspects.
- Score: 37.857915442467316
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 3D multiple object tracking (MOT) plays a crucial role in autonomous driving perception. Recent end-to-end query-based trackers simultaneously detect and track objects, which have shown promising potential for the 3D MOT task. However, existing methods overlook the uncertainty issue, which refers to the lack of precise confidence about the state and location of tracked objects. Uncertainty arises owing to various factors during motion observation by cameras, especially occlusions and the small size of target objects, resulting in an inaccurate estimation of the object's position, label, and identity. To this end, we propose an Uncertainty-Aware 3D MOT framework, UA-Track, which tackles the uncertainty problem from multiple aspects. Specifically, we first introduce an Uncertainty-aware Probabilistic Decoder to capture the uncertainty in object prediction with probabilistic attention. Secondly, we propose an Uncertainty-guided Query Denoising strategy to further enhance the training process. We also utilize Uncertainty-reduced Query Initialization, which leverages predicted 2D object location and depth information to reduce query uncertainty. As a result, our UA-Track achieves state-of-the-art performance on the nuScenes benchmark, i.e., 66.3% AMOTA on the test split, surpassing the previous best end-to-end solution by a significant margin of 8.9% AMOTA.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - UTrack: Multi-Object Tracking with Uncertain Detections [37.826006378381955]
We introduce, for the first time, a fast way to obtain the empirical predictive distribution during object detection.
Our mechanism can easily be integrated into state-of-the-art trackers, enabling them to fully exploit the uncertainty in the detections.
We demonstrate the effectiveness of our contribution on a variety of benchmarks, such as MOT17, MOT20, DanceTrack, and KITTI.
arXiv Detail & Related papers (2024-08-30T08:34:51Z) - UncertaintyTrack: Exploiting Detection and Localization Uncertainty in Multi-Object Tracking [8.645078288584305]
Multi-object tracking (MOT) methods have seen a significant boost in performance recently.
We introduce UncertaintyTrack, a collection of extensions that can be applied to multiple TBD trackers.
Experiments on the Berkeley Deep Drive MOT dataset show that the combination of our method and informative uncertainty estimates reduces the number of ID switches by around 19%.
arXiv Detail & Related papers (2024-02-19T17:27:04Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - 3D Object Detection for Autonomous Driving: A Comprehensive Survey [48.30753402458884]
3D object detection, which intelligently predicts the locations, sizes, and categories of the critical 3D objects near an autonomous vehicle, is an important part of a perception system.
This paper reviews the advances in 3D object detection for autonomous driving.
arXiv Detail & Related papers (2022-06-19T19:43:11Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Detecting Invisible People [58.49425715635312]
We re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects.
We demonstrate that current detection and tracking systems perform dramatically worse on this task.
Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks.
arXiv Detail & Related papers (2020-12-15T16:54:45Z) - Uncertainty-Aware Voxel based 3D Object Detection and Tracking with
von-Mises Loss [13.346392746224117]
Uncertainty helps us tackle the error in the perception system and improve robustness.
We propose a method for improving target tracking performance by adding uncertainty regression to the SECOND detector.
arXiv Detail & Related papers (2020-11-04T21:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.