A Pipelined Memristive Neural Network Analog-to-Digital Converter
- URL: http://arxiv.org/abs/2406.02197v1
- Date: Tue, 4 Jun 2024 10:51:12 GMT
- Title: A Pipelined Memristive Neural Network Analog-to-Digital Converter
- Authors: Loai Danial, Kanishka Sharma, Shahar Kvatinsky,
- Abstract summary: This paper proposes a scalable and modular neural network ADC architecture based on a pipeline of four-bit converters.
An 8-bit pipelined ADC achieves 0.18 LSB INL, 0.20 LSB DNL, 7.6 ENOB, and 0.97 fJ/conv FOM.
- Score: 0.24578723416255754
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the advent of high-speed, high-precision, and low-power mixed-signal systems, there is an ever-growing demand for accurate, fast, and energy-efficient analog-to-digital (ADCs) and digital-to-analog converters (DACs). Unfortunately, with the downscaling of CMOS technology, modern ADCs trade off speed, power and accuracy. Recently, memristive neuromorphic architectures of four-bit ADC/DAC have been proposed. Such converters can be trained in real-time using machine learning algorithms, to break through the speedpower-accuracy trade-off while optimizing the conversion performance for different applications. However, scaling such architectures above four bits is challenging. This paper proposes a scalable and modular neural network ADC architecture based on a pipeline of four-bit converters, preserving their inherent advantages in application reconfiguration, mismatch selfcalibration, noise tolerance, and power optimization, while approaching higher resolution and throughput in penalty of latency. SPICE evaluation shows that an 8-bit pipelined ADC achieves 0.18 LSB INL, 0.20 LSB DNL, 7.6 ENOB, and 0.97 fJ/conv FOM. This work presents a significant step towards the realization of large-scale neuromorphic data converters.
Related papers
- Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Digital-analog hybrid matrix multiplication processor for optical neural
networks [11.171425574890765]
We propose a digital-analog hybrid optical computing architecture for optical neural networks (ONNs)
By introducing the logic levels and decisions based on thresholding, the calculation precision can be significantly enhanced.
We have demonstrated an unprecedented 16-bit calculation precision for high-definition image processing, with a pixel error rate (PER) as low as $1.8times10-3$ at a signal-to-noise ratio (SNR) of 18.2 dB.
arXiv Detail & Related papers (2024-01-26T18:42:57Z) - ADC/DAC-Free Analog Acceleration of Deep Neural Networks with Frequency
Transformation [2.7488316163114823]
This paper proposes a novel approach to an energy-efficient acceleration of frequency-domain neural networks by utilizing analog-domain frequency-based tensor transformations.
Our approach achieves more compact cells by eliminating the need for trainable parameters in the transformation matrix.
On a 16$times$16 crossbars, for 8-bit input processing, the proposed approach achieves the energy efficiency of 1602 tera operations per second per Watt.
arXiv Detail & Related papers (2023-09-04T19:19:39Z) - Leveraging Residue Number System for Designing High-Precision Analog
Deep Neural Network Accelerators [3.4218508703868595]
We use the residue number system (RNS) to compose high-precision operations from multiple low-precision operations.
RNS can achieve 99% FP32 accuracy for state-of-the-art DNN inference using data converters with only $6$-bit precision.
arXiv Detail & Related papers (2023-06-15T20:24:18Z) - Practical Conformer: Optimizing size, speed and flops of Conformer for
on-Device and cloud ASR [67.63332492134332]
We design an optimized conformer that is small enough to meet on-device restrictions and has fast inference on TPUs.
Our proposed encoder can double as a strong standalone encoder in on device, and as the first part of a high-performance ASR pipeline.
arXiv Detail & Related papers (2023-03-31T23:30:48Z) - RF-Photonic Deep Learning Processor with Shannon-Limited Data Movement [0.0]
Optical neural networks (ONNs) are promising accelerators with ultra-low latency and energy consumption.
We introduce our multiplicative analog frequency transform ONN (MAFT-ONN) that encodes the data in the frequency domain.
We experimentally demonstrate the first hardware accelerator that computes fully-analog deep learning on raw RF signals.
arXiv Detail & Related papers (2022-07-08T16:37:13Z) - Neural-PIM: Efficient Processing-In-Memory with Neural Approximation of
Peripherals [11.31429464715989]
This paper presents a new PIM architecture to efficiently accelerate deep learning tasks.
It is proposed to minimize the required A/D conversions with analog accumulation and neural approximated peripheral circuits.
Evaluations on different benchmarks demonstrate that Neural-PIM can improve energy efficiency by 5.36x (1.73x) and speed up throughput by 3.43x (1.59x) without losing accuracy.
arXiv Detail & Related papers (2022-01-30T16:14:49Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On
Analog Compute-in-Memory Accelerator [50.31646817567764]
This work describes TinyML models for the popular always-on applications of keyword spotting (KWS) and visual wake words (VWW)
We detail a comprehensive training methodology, to retain accuracy in the face of analog non-idealities.
We also describe AON-CiM, a programmable, minimal-area phase-change memory (PCM) analog CiM accelerator.
arXiv Detail & Related papers (2021-11-10T10:24:46Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - Non-Autoregressive Transformer ASR with CTC-Enhanced Decoder Input [54.82369261350497]
We propose a CTC-enhanced NAR transformer, which generates target sequence by refining predictions of the CTC module.
Experimental results show that our method outperforms all previous NAR counterparts and achieves 50x faster decoding speed than a strong AR baseline with only 0.0 0.3 absolute CER degradation on Aishell-1 and Aishell-2 datasets.
arXiv Detail & Related papers (2020-10-28T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.