論文の概要: Rectifying Reinforcement Learning for Reward Matching
- arxiv url: http://arxiv.org/abs/2406.02213v1
- Date: Tue, 4 Jun 2024 11:11:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:42:06.234494
- Title: Rectifying Reinforcement Learning for Reward Matching
- Title(参考訳): リワードマッチングのための強化学習
- Authors: Haoran He, Emmanuel Bengio, Qingpeng Cai, Ling Pan,
- Abstract要約: 我々は,GFlowNetsと統一政策の政策評価の新たなつながりを確立する。
本稿では,GFlowNetsと同じ報酬マッチング効果を達成できる新しいポリシー評価アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.294107455811496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Generative Flow Network (GFlowNet) is a probabilistic framework in which an agent learns a stochastic policy and flow functions to sample objects with probability proportional to an unnormalized reward function. GFlowNets share a strong resemblance to reinforcement learning (RL), that typically aims to maximize reward, due to their sequential decision-making processes. Recent works have studied connections between GFlowNets and maximum entropy (MaxEnt) RL, which modifies the standard objective of RL agents by learning an entropy-regularized objective. However, a critical theoretical gap persists: despite the apparent similarities in their sequential decision-making nature, a direct link between GFlowNets and standard RL has yet to be discovered, while bridging this gap could further unlock the potential of both fields. In this paper, we establish a new connection between GFlowNets and policy evaluation for a uniform policy. Surprisingly, we find that the resulting value function for the uniform policy has a close relationship to the flows in GFlowNets. Leveraging these insights, we further propose a novel rectified policy evaluation (RPE) algorithm, which achieves the same reward-matching effect as GFlowNets, offering a new perspective. We compare RPE, MaxEnt RL, and GFlowNets in a number of benchmarks, and show that RPE achieves competitive results compared to previous approaches. This work sheds light on the previously unexplored connection between (non-MaxEnt) RL and GFlowNets, potentially opening new avenues for future research in both fields.
- Abstract(参考訳): Generative Flow Network (GFlowNet) は、エージェントが確率的ポリシーを学習し、フロー関数が非正規化報酬関数に比例した確率でオブジェクトをサンプリングする確率的フレームワークである。
GFlowNetsは強化学習(RL)とよく似ているが、これは典型的に報酬を最大化することを目的としている。
近年,GFlowNetと最大エントロピー(MaxEnt)RLの関連性を検討した。
GFlowNetsと標準RLとの直接のリンクはまだ発見されていないが、このギャップを埋めることで、両方の分野の可能性をさらに解き放つことができる。
本稿では,GFlowNetsと統一政策の政策評価の新たな関連性を確立する。
意外なことに、統一ポリシーの結果として得られる値関数は、GFlowNetsのフローと密接な関係があることが判明した。
これらの知見を生かして、GFlowNetsと同じ報酬マッチング効果を達成し、新たな視点を提供する、新しい修正ポリシー評価(RPE)アルゴリズムを提案する。
我々は, RPE, MaxEnt RL, GFlowNetsを多数のベンチマークで比較し, 従来の手法と比較して, RPEが競争力を発揮することを示す。
この研究は、(非MaxEnt) RL と GFlowNets の間の未解明の接続に光を当て、将来の両方の分野の研究への新たな道を開く可能性がある。
関連論文リスト
- Improving GFlowNets with Monte Carlo Tree Search [6.497027864860203]
近年の研究では,GFlowNetsとエントロピー規則化強化学習の強い関係が明らかにされている。
我々はモンテカルロ木探索(MCTS)を適用してGFlowNetの計画能力を高めることを提案する。
実験により,本手法により,GFlowNetトレーニングのサンプル効率と,事前学習したGFlowNetモデルの生成精度が向上することが示された。
論文 参考訳(メタデータ) (2024-06-19T15:58:35Z) - Looking Backward: Retrospective Backward Synthesis for Goal-Conditioned GFlowNets [27.33222647437964]
Generative Flow Networks (GFlowNets) は、報酬に確率のあるオブジェクトを逐次生成するポリシーを学ぶためのアモータイズされたサンプリング手法である。
GFlowNetsは、標準的な強化学習手法とは対照的に、多種多様な高次比例オブジェクトを生成する優れた能力を示す。
近年、目標条件付きGFlowNetを学習し、タスクが指定した目標を達成できる単一のGFlowNetをトレーニングすることを目的として、様々な有用なプロパティを取得するための研究が進められている。
本稿では,これらの課題に対処するため,RBS(Retrospective Backward Synthesis)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-03T09:44:10Z) - Generative Flow Networks as Entropy-Regularized RL [4.857649518812728]
生成フローネットワーク(ジェネレーティブフローネットワーク、英:generative flow network、GFlowNets)は、一連の行動を通じて与えられた報酬に比例確率を持つ合成対象をサンプリングするためのポリシーを訓練する手法である。
生成フローネットワークの学習作業は,エントロピー規則化強化学習問題として効率的に行うことができることを示す。
先に報告した結果とは対照的に,エントロピー的RLアプローチは,既存のGFlowNetトレーニング手法と競合する可能性がある。
論文 参考訳(メタデータ) (2023-10-19T17:31:40Z) - An Empirical Study of the Effectiveness of Using a Replay Buffer on Mode
Discovery in GFlowNets [47.82697599507171]
強化学習 (Reinforcement Learning, RL) アルゴリズムは, アクションを反復的にサンプリングし, 期待したリターンを最大化する方法を学習し, 最適なポリシーを学習することを目的としている。
GFlowNetsは、R(x)$の比例サンプリングを近似したポリシーを学ぶことによって、離散集合から様々な候補を$x$で生成するように設計されたアルゴリズムの特別なクラスである。
論文 参考訳(メタデータ) (2023-07-15T01:17:14Z) - Towards Understanding and Improving GFlowNet Training [71.85707593318297]
本稿では,学習したサンプリング分布と目標報酬分布を比較するための効率的な評価手法を提案する。
本稿では,高解像度のx$,相対的エッジフローポリシーのパラメータ化,新しい軌道バランス目標を提案する。
論文 参考訳(メタデータ) (2023-05-11T22:50:41Z) - Stochastic Generative Flow Networks [89.34644133901647]
生成フローネットワーク(GFlowNets)は「制御としての推論」のレンズを通して複雑な構造をサンプリングすることを学ぶ
既存のGFlowNetsは決定論的環境にのみ適用でき、動的処理によるより一般的なタスクではフェールする。
本稿では,GFlowNetsを環境に拡張する新しいアルゴリズムであるGFlowNetsを紹介する。
論文 参考訳(メタデータ) (2023-02-19T03:19:40Z) - Distributional GFlowNets with Quantile Flows [73.73721901056662]
Generative Flow Networks(GFlowNets)は、エージェントが一連の意思決定ステップを通じて複雑な構造を生成するためのポリシーを学ぶ確率的サンプルの新たなファミリーである。
本研究では,GFlowNetの分散パラダイムを採用し,各フロー関数を分散化し,学習中により情報的な学習信号を提供する。
GFlowNet学習アルゴリズムは,リスク不確実性のあるシナリオを扱う上で不可欠な,リスクに敏感なポリシーを学習することができる。
論文 参考訳(メタデータ) (2023-02-11T22:06:17Z) - A theory of continuous generative flow networks [104.93913776866195]
生成フローネットワーク(Generative Flow Networks, GFlowNets)は、非正規化されたターゲット分布からサンプルを抽出するように訓練されたアモータイズされた変分推論アルゴリズムである。
本稿では、既存の離散GFlowNetと、連続的あるいはハイブリッドな状態空間を持つGFlowNetを包含する一般化GFlowNetの理論を提案する。
論文 参考訳(メタデータ) (2023-01-30T00:37:56Z) - Generative Augmented Flow Networks [88.50647244459009]
GFlowNetsに中間報酬を組み込むためにGAFlowNets(Generative Augmented Flow Networks)を提案する。
GAFlowNetsは、エッジベースとステートベース固有の報酬を共同で活用して、探索を改善することができる。
論文 参考訳(メタデータ) (2022-10-07T03:33:56Z) - Learning GFlowNets from partial episodes for improved convergence and
stability [56.99229746004125]
生成フローネットワーク(GFlowNets)は、非正規化対象密度の下で離散オブジェクトのシーケンシャルサンプリングを訓練するアルゴリズムである。
GFlowNetsの既存のトレーニング目的は、状態または遷移に局所的であるか、あるいはサンプリング軌道全体にわたって報酬信号を伝達する。
強化学習におけるTD($lambda$)アルゴリズムにインスパイアされたサブトラジェクティブバランス(subtrajectory balance, SubTB($lambda$)を導入する。
論文 参考訳(メタデータ) (2022-09-26T15:44:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。