論文の概要: SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining
- arxiv url: http://arxiv.org/abs/2406.02214v1
- Date: Tue, 4 Jun 2024 11:14:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:42:06.232031
- Title: SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining
- Title(参考訳): SLTrain:パラメータとメモリ効率向上のためのスパースとローランクアプローチ
- Authors: Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, Bamdev Mishra,
- Abstract要約: 大規模言語モデル(LLM)をゼロから訓練するには、計算能力と広範なメモリ容量が必要である。
最近の研究では、パラメータとメモリの点で効率的な微調整のための重量の低ランク構造を探索している。
本稿では,SLTrain と呼ばれる事前学習用低ランク行列とスパース行列の和として重みをパラメータ化することを提案する。
- 参考スコア(独自算出の注目度): 39.56934385513862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown impressive capabilities across various tasks. However, training LLMs from scratch requires significant computational power and extensive memory capacity. Recent studies have explored low-rank structures on weights for efficient fine-tuning in terms of parameters and memory, either through low-rank adaptation or factorization. While effective for fine-tuning, low-rank structures are generally less suitable for pretraining because they restrict parameters to a low-dimensional subspace. In this work, we propose to parameterize the weights as a sum of low-rank and sparse matrices for pretraining, which we call SLTrain. The low-rank component is learned via matrix factorization, while for the sparse component, we employ a simple strategy of uniformly selecting the sparsity support at random and learning only the non-zero entries with the fixed support. While being simple, the random fixed-support sparse learning strategy significantly enhances pretraining when combined with low-rank learning. Our results show that SLTrain adds minimal extra parameters and memory costs compared to pretraining with low-rank parameterization, yet achieves substantially better performance, which is comparable to full-rank training. Remarkably, when combined with quantization and per-layer updates, SLTrain can reduce memory requirements by up to 73% when pretraining the LLaMA 7B model.
- Abstract(参考訳): 大きな言語モデル(LLM)は、様々なタスクにまたがって印象的な機能を示している。
しかし、LLMをスクラッチからトレーニングするには、計算能力と広範なメモリ容量が必要である。
最近の研究では、低ランク適応または分解によって、パラメータや記憶の点で効率的な微調整を行うために、重量の低ランク構造を探索している。
微調整には有効であるが、低次元部分空間にパラメータを制限するため、一般には事前訓練には適さない。
本研究では,SLTrain と呼ばれる事前学習のための低ランク行列とスパース行列の和として重みをパラメータ化することを提案する。
低ランク成分は行列分解によって学習されるが、スパース成分については、ランダムにスパーシティサポートを均一に選択し、固定されたサポートを持つゼロでないエントリのみを学習する単純な戦略を用いる。
単純ながら、ランダムな固定支援スパース学習戦略は、低ランク学習と組み合わせた場合の事前学習を著しく促進する。
その結果、SLTrainは、低ランクパラメータ化の事前訓練に比べて最小限のパラメータとメモリコストを付加するが、フルランクトレーニングに匹敵する性能は著しく向上することがわかった。
注目すべきは、量子化と層ごとのアップデートを組み合わせることで、LLaMA 7Bモデルを事前トレーニングする場合、SLTrainはメモリ要求を最大73%削減できることだ。
関連論文リスト
- SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - BlockLLM: Memory-Efficient Adaptation of LLMs by Selecting and Optimizing the Right Coordinate Blocks [19.007090250576585]
BlockLLMはブロック座標降下にインスパイアされたアプローチである。
微調整と事前訓練の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-06-25T05:45:12Z) - GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection [133.45193150403537]
LLM(Large Language Models)のトレーニングは、重み付けやGPU状態の増大によって、メモリ上の重大な問題が発生する。
本研究では,メモリ効率のトレーニング戦略としてグラディエント・ローランド・プロジェクション(GaLore)を提案する。
私たちの8ビットのGaLoreは、BF16ベースラインと比較して、メモリを82.5%、トレーニング総メモリを63.3%削減します。
論文 参考訳(メタデータ) (2024-03-06T07:29:57Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
低ランク適応 (LoRA) は、適応過程が本質的に低次元であるという考えに基づいている。
我々は、より高階を維持しながらトレーニング可能なパラメータを少なくするミニアンサンブルな低ランクアダプタMELoRAを提案する。
実験結果から, 自然言語理解タスクの8倍のトレーニングパラメータ, 続くタスクの36倍のトレーニングパラメータが得られた。
論文 参考訳(メタデータ) (2024-02-27T07:14:12Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
モデル性能を維持しながら計算効率のよい微調整を実現するために,様々なパラメータ効率の微調整技術が提案されている。
テンソル-トレイン分解によりトレーニング可能なパラメータを大幅に削減するフレームワークであるLoRETTAを提案する。
LoRETTAは、LLaMA-2-7Bモデルで最大100倍のパラメータで、最も広く使われているPEFT法よりも同等または優れた性能を実現している。
論文 参考訳(メタデータ) (2024-02-18T01:20:00Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
私たちはaを提案します。
Sparse- efficient Sparse Training (PST) は、スパース・アウェア・トレーニング中にトレーニング可能なパラメータの数を減少させる手法である。
多様なネットワーク(BERT、RoBERTa、GPT-2)を用いた実験では、PSTは従来のスパーシリティ法よりも同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-05-23T02:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。