Node-Level Topological Representation Learning on Point Clouds
- URL: http://arxiv.org/abs/2406.02300v1
- Date: Tue, 4 Jun 2024 13:29:12 GMT
- Title: Node-Level Topological Representation Learning on Point Clouds
- Authors: Vincent P. Grande, Michael T. Schaub,
- Abstract summary: We propose a novel method to extract node-level topological features from complex point clouds.
We verify the effectiveness of these topological point features on both synthetic and real-world data.
- Score: 5.079602839359521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topological Data Analysis (TDA) allows us to extract powerful topological and higher-order information on the global shape of a data set or point cloud. Tools like Persistent Homology or the Euler Transform give a single complex description of the global structure of the point cloud. However, common machine learning applications like classification require point-level information and features to be available. In this paper, we bridge this gap and propose a novel method to extract node-level topological features from complex point clouds using discrete variants of concepts from algebraic topology and differential geometry. We verify the effectiveness of these topological point features (TOPF) on both synthetic and real-world data and study their robustness under noise.
Related papers
- Revisiting Point Cloud Completion: Are We Ready For The Real-World? [1.982969884513013]
We show that current benchmark synthetic point clouds lack rich topological features that are important constituents of point clouds captured in realistic settings.
We contribute the first real-world industrial point cloud dataset for point cloud completion, RealPC.
We show how 0-dimensional $mathcalPH$ priors, which extract the global topology of a complete shape in the form of a 3-D skeleton, can assist a model in generating topologically-consistent complete shapes.
arXiv Detail & Related papers (2024-11-26T16:46:47Z) - Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models [1.3030624795284795]
We propose a learning-based framework for non-rigid point cloud matching.
Key insight is to incorporate semantic features derived from large vision models (LVMs)
Our framework effectively leverages the structural information contained in the semantic features to address ambiguities arise from self-similarities among local geometries.
arXiv Detail & Related papers (2024-08-16T07:02:19Z) - Bidirectional Knowledge Reconfiguration for Lightweight Point Cloud
Analysis [74.00441177577295]
Point cloud analysis faces computational system overhead, limiting its application on mobile or edge devices.
This paper explores feature distillation for lightweight point cloud models.
We propose bidirectional knowledge reconfiguration to distill informative contextual knowledge from the teacher to the student.
arXiv Detail & Related papers (2023-10-08T11:32:50Z) - Topological Point Cloud Clustering [1.9981375888949475]
Topological Point Cloud Clustering (TPCC) is a new method to cluster points in an arbitrary point cloud based on their contribution to global topological features.
We test TPCC on both synthetic and real-world data and compare it with classical spectral clustering.
arXiv Detail & Related papers (2023-03-29T14:15:38Z) - Topological Learning in Multi-Class Data Sets [0.3050152425444477]
We study the impact of topological complexity on learning in feedforward deep neural networks (DNNs)
We evaluate our topological classification algorithm on multiple constructed and open source data sets.
arXiv Detail & Related papers (2023-01-23T21:54:25Z) - Bending Graphs: Hierarchical Shape Matching using Gated Optimal
Transport [80.64516377977183]
Shape matching has been a long-studied problem for the computer graphics and vision community.
We investigate a hierarchical learning design, to which we incorporate local patch-level information and global shape-level structures.
We propose a novel optimal transport solver by recurrently updating features on non-confident nodes to learn globally consistent correspondences between the shapes.
arXiv Detail & Related papers (2022-02-03T11:41:46Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Joint Geometric and Topological Analysis of Hierarchical Datasets [7.098759778181621]
In this paper, we focus on high-dimensional data that are organized into several hierarchical datasets.
The main novelty in this work lies in the combination of two powerful data-analytic approaches: topological data analysis and geometric manifold learning.
We show that our new method gives rise to superior classification results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-04-03T13:02:00Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
We propose a cascaded refinement network together with a coarse-to-fine strategy to synthesize the detailed object shapes.
Considering the local details of partial input with the global shape information together, we can preserve the existing details in the incomplete point set.
We also design a patch discriminator that guarantees every local area has the same pattern with the ground truth to learn the complicated point distribution.
arXiv Detail & Related papers (2020-04-07T13:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.