論文の概要: AMOSL: Adaptive Modality-wise Structure Learning in Multi-view Graph Neural Networks For Enhanced Unified Representation
- arxiv url: http://arxiv.org/abs/2406.02348v1
- Date: Tue, 4 Jun 2024 14:24:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:00:43.775836
- Title: AMOSL: Adaptive Modality-wise Structure Learning in Multi-view Graph Neural Networks For Enhanced Unified Representation
- Title(参考訳): AMOSL: 拡張統一表現のための多視点グラフニューラルネットワークにおける適応的モダリティワイド構造学習
- Authors: Peiyu Liang, Hongchang Gao, Xubin He,
- Abstract要約: マルチビューグラフニューラルネットワーク(MVGNN)は、オブジェクト表現の学習に様々なモダリティを活用するのに長けている。
既存の手法では、実世界の相違を見渡すモダリティを越えて同じ局所トポロジー構造を仮定する。
これらの問題に対処するため,適応型モーダリティ構造学習(AMoSL)を提案する。
- 参考スコア(独自算出の注目度): 22.84527318463151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Multi-view Graph Neural Networks (MVGNNs) excel at leveraging diverse modalities for learning object representation, existing methods assume identical local topology structures across modalities that overlook real-world discrepancies. This leads MVGNNs straggles in modality fusion and representations denoising. To address these issues, we propose adaptive modality-wise structure learning (AMoSL). AMoSL captures node correspondences between modalities via optimal transport, and jointly learning with graph embedding. To enable efficient end-to-end training, we employ an efficient solution for the resulting complex bilevel optimization problem. Furthermore, AMoSL adapts to downstream tasks through unsupervised learning on inter-modality distances. The effectiveness of AMoSL is demonstrated by its ability to train more accurate graph classifiers on six benchmark datasets.
- Abstract(参考訳): MRGNN(Multi-view Graph Neural Networks)は、オブジェクト表現の学習に様々なモダリティを活用するのに優れていますが、既存の手法では、現実世界の相違点を見下ろすモダリティをまたいだ同じ局所トポロジ構造を前提としています。
これによりMVGNNは、モダリティ融合とデノナイジングの表現においてバラバラになる。
これらの課題に対処するため,適応型モダリティワイド構造学習(AMoSL)を提案する。
AMoSLは最適な輸送によってモーダル間のノード対応をキャプチャし、グラフ埋め込みで共同学習する。
効率的なエンドツーエンドトレーニングを実現するために、複雑な二段階最適化問題に対する効率的な解法を用いる。
さらに、AMoSLはモダリティ間距離の教師なし学習を通じて下流タスクに適応する。
AMoSLの有効性は、より正確なグラフ分類器を6つのベンチマークデータセットで訓練できることによって示される。
関連論文リスト
- Bridging Large Language Models and Graph Structure Learning Models for Robust Representation Learning [22.993015048941444]
グラフ表現学習は現実世界のアプリケーションには不可欠だが、広範にわたるノイズに遭遇することが多い。
本稿では,事前学習された言語モデルとグラフ構造学習モデルの相補的な長所を統合するフレームワークであるLangGSLを紹介する。
論文 参考訳(メタデータ) (2024-10-15T22:43:32Z) - AdaRC: Mitigating Graph Structure Shifts during Test-Time [66.40525136929398]
テスト時間適応(TTA)は、ソースドメインに再アクセスすることなく、トレーニング済みのモデルをターゲットドメインに適応できる能力によって注目を集めている。
AdaRCは,グラフの構造シフトに効果的かつ効率的な適応を意図した,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T15:15:40Z) - Language Models are Graph Learners [70.14063765424012]
言語モデル(LM)は、グラフニューラルネットワーク(GNN)やグラフトランスフォーマー(GT)など、ドメイン固有のモデルの優位性に挑戦している。
本稿では,ノード分類タスクにおける最先端のGNNに匹敵する性能を実現するために,既製のLMを有効活用する手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T08:27:54Z) - Dr.E Bridges Graphs with Large Language Models through Words [12.22063024099311]
本稿では,LLMグラフアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的な '' を理解可能な自然言語に効果的に翻訳することができる。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - Efficient End-to-end Language Model Fine-tuning on Graphs [21.23522552579571]
Text-Attributed Graphs (TAGs) からの学習は、その幅広い現実世界のアプリケーションのために大きな注目を集めている。
我々は,TAG上での言語モデルのエンドツーエンドな微調整のための,新規かつ効率的なアプローチであるLEAdingを紹介する。
提案手法は,Ogbn-arxiv のリーダーボード上で,最先端のSOTA(State-of-the-art)を達成し,優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-07T22:35:16Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Artificial-Spiking Hierarchical Networks for Vision-Language
Representation Learning [16.902924543372713]
最先端の手法は、大規模データセットの事前トレーニングによって、素晴らしいパフォーマンスを達成する。
本稿では,新しい視覚的セマンティックモジュールを導入することで,マルチモーダルアライメントのための効率的なフレームワークを提案する。
実験の結果、提案されたASH-Netsは競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-18T10:40:25Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。