論文の概要: Generative Active Learning for Long-tailed Instance Segmentation
- arxiv url: http://arxiv.org/abs/2406.02435v1
- Date: Tue, 4 Jun 2024 15:57:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:30:46.788579
- Title: Generative Active Learning for Long-tailed Instance Segmentation
- Title(参考訳): 長距離インスタンスセグメンテーションのための生成能動学習
- Authors: Muzhi Zhu, Chengxiang Fan, Hao Chen, Yang Liu, Weian Mao, Xiaogang Xu, Chunhua Shen,
- Abstract要約: キャッシュ勾配に基づいて生成したデータの寄与を推定する新しいアルゴリズムであるBSGALを提案する。
実験により,BSGALはベースラインアプローチより優れ,長い尾のセグメンテーションの性能が効果的に向上することが示された。
- 参考スコア(独自算出の注目度): 55.66158205855948
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, large-scale language-image generative models have gained widespread attention and many works have utilized generated data from these models to further enhance the performance of perception tasks. However, not all generated data can positively impact downstream models, and these methods do not thoroughly explore how to better select and utilize generated data. On the other hand, there is still a lack of research oriented towards active learning on generated data. In this paper, we explore how to perform active learning specifically for generated data in the long-tailed instance segmentation task. Subsequently, we propose BSGAL, a new algorithm that online estimates the contribution of the generated data based on gradient cache. BSGAL can handle unlimited generated data and complex downstream segmentation tasks effectively. Experiments show that BSGAL outperforms the baseline approach and effectually improves the performance of long-tailed segmentation. Our code can be found at https://github.com/aim-uofa/DiverGen.
- Abstract(参考訳): 近年,大規模言語画像生成モデルが注目され,これらのモデルから生成されたデータを活用して認識タスクの性能をさらに向上する研究が数多く行われている。
しかし、すべての生成されたデータが下流モデルに肯定的な影響を与えるわけではない。
一方、生成したデータに対するアクティブな学習を指向する研究は、いまだに不足している。
本稿では,長期化インスタンスセグメンテーションタスクにおいて,生成されたデータに対して,アクティブな学習を行う方法について検討する。
次に、勾配キャッシュに基づいて生成されたデータの寄与をオンラインで推定する新しいアルゴリズムであるBSGALを提案する。
BSGALは、無制限に生成されたデータと複雑な下流セグメンテーションタスクを効果的に処理できる。
実験により,BSGALはベースラインアプローチより優れ,長い尾のセグメンテーションの性能が効果的に向上することが示された。
私たちのコードはhttps://github.com/aim-uofa/DiverGenで参照できます。
関連論文リスト
- Scaling Up Diffusion and Flow-based XGBoost Models [5.944645679491607]
本稿では,XGBoostを拡散・流れマッチングモデルにおける関数近似器として利用するための最近の提案について検討する。
より優れた実装では、以前よりも370倍大きなデータセットにスケールできる。
我々は,Fast Calorimeter Simulation Challengeの一環として,大規模科学的データセットについて報告する。
論文 参考訳(メタデータ) (2024-08-28T18:00:00Z) - ScribbleGen: Generative Data Augmentation Improves Scribble-supervised Semantic Segmentation [10.225021032417589]
本稿では,スクリブル教師付きセマンティックセグメンテーションのための生成データ拡張手法であるScribbleGenを提案する。
セマンティックスクリブルに条件付き制御ネット拡散モデルを用いて,高品質なトレーニングデータを生成する。
我々のフレームワークは、完全に教師されたセグメンテーションを超越しても、小さなデータセットでのセグメンテーション性能を著しく改善することを示す。
論文 参考訳(メタデータ) (2023-11-28T13:44:33Z) - Learning to Jump: Thinning and Thickening Latent Counts for Generative
Modeling [69.60713300418467]
ジャンプの学習は、様々な種類のデータの生成モデリングのための一般的なレシピである。
ジャンプの学習が、デノゼの学習と相容れないパフォーマンスを期待される場合と、より良いパフォーマンスを期待される場合を実証する。
論文 参考訳(メタデータ) (2023-05-28T05:38:28Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
本稿では,既存のDocREモデルの根本原因について検討する。
本稿では,モデルが学習しやすく,決定論的な関係行列から記号列と順序列を生成することを提案する。
4つのデータセットに対する実験結果から,提案手法は生成型DocREモデルの性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2022-10-28T11:18:10Z) - Data Augmentation techniques in time series domain: A survey and
taxonomy [0.20971479389679332]
時系列を扱うディープニューラルネットワークは、トレーニングで使用されるデータセットのサイズと一貫性に大きく依存する。
この研究は、すべての利用可能なアルゴリズムの概要を提供するために、この分野の最先端を体系的にレビューする。
本研究の究極的な目的は、この分野の将来の研究者を導くために、より良い結果をもたらす領域の進化と性能を概説することである。
論文 参考訳(メタデータ) (2022-06-25T17:09:00Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
本稿では,分類ラベルをセグメントマップの予測から導出する小型データセットのコスト効率の高い分類器であるCvSを提案する。
我々は,CvSが従来の手法よりもはるかに高い分類結果が得られることを示す多種多様な問題に対して,本フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2021-10-29T18:41:15Z) - Generative Conversational Networks [67.13144697969501]
本稿では,対話エージェントが独自のラベル付き学習データを生成することを学習する,生成会話ネットワーク(Generative Conversational Networks)というフレームワークを提案する。
そこで本研究では,シードデータから学習したベースラインモデルに対して,意図検出が平均35%,スロットタグが平均21%向上したことを示す。
論文 参考訳(メタデータ) (2021-06-15T23:19:37Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
対照的な自己教師型学習は、セグメンテーションやオブジェクト検出といった多くの下流タスクにおいて教師付き事前訓練よりも優れています。
本稿では,データセットのバイアスが既存手法にどのように影響するかを最初に検討する。
現在のコントラストアプローチは、(i)オブジェクト中心対シーン中心、(ii)一様対ロングテール、(iii)一般対ドメイン固有データセットなど、驚くほどうまく機能することを示す。
論文 参考訳(メタデータ) (2021-06-10T17:59:13Z) - Deep Structure Learning using Feature Extraction in Trained Projection
Space [0.0]
我々は、低次元空間における畳み込みによる特徴抽出を可能にするために、Randon-transform(線形データ投影)の自己調整およびデータ依存バージョンを用いてネットワークアーキテクチャを導入する。
PiNetという名前のフレームワークは、エンドツーエンドでトレーニングでき、ボリュームセグメンテーションタスクで有望なパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-09-01T12:16:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。