Quantum states from normalizing flows
- URL: http://arxiv.org/abs/2406.02451v1
- Date: Tue, 4 Jun 2024 16:16:58 GMT
- Title: Quantum states from normalizing flows
- Authors: Scott Lawrence, Arlee Shelby, Yukari Yamauchi,
- Abstract summary: We introduce an architecture for neural quantum states for many-body quantum-mechanical systems, based on normalizing flows.
We demonstrate the use of this architecture for both ground-state preparation and real-time evolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an architecture for neural quantum states for many-body quantum-mechanical systems, based on normalizing flows. The use of normalizing flows enables efficient uncorrelated sampling of configurations from the probability distribution defined by the wavefunction, mitigating a major cost of using neural states in simulation. We demonstrate the use of this architecture for both ground-state preparation (for self-interacting particles in a harmonic trap) and real-time evolution (for one-dimensional tunneling). Finally, we detail a procedure for obtaining rigorous estimates of the systematic error when using neural states to approximate quantum evolution.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Emergence of global receptive fields capturing multipartite quantum correlations [0.565473932498362]
In quantum physics, even simple data with a well-defined structure at the wave function level can be characterized by extremely complex correlations.
We show that monitoring the neural network weight space while learning quantum statistics allows to develop physical intuition about complex multipartite patterns.
Our findings suggest a fresh look at constructing convolutional neural networks for processing data with non-local patterns.
arXiv Detail & Related papers (2024-08-23T12:45:40Z) - Exploring quantum localization with machine learning [39.58317527488534]
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization.
Our approach integrates a versatile quantum phase space parametrization leading to a custom 'quantum' NN, with the pattern recognition capabilities of a modified convolutional model.
arXiv Detail & Related papers (2024-06-01T08:50:26Z) - Reconstructing complex states of a 20-qubit quantum simulator [0.6646556786265893]
We demonstrate an efficient method for reconstruction of significantly entangled multi-qubit quantum states.
We observe superior state reconstruction quality and faster convergence compared to the methods based on neural network quantum state representations.
Our results pave the way towards efficient experimental characterization of complex states produced by the quench dynamics of many-body quantum systems.
arXiv Detail & Related papers (2022-08-09T15:52:20Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Continuous-variable neural-network quantum states and the quantum rotor
model [2.3398944692275476]
We study neural-network quantum state algorithms for analyzing continuous-variable lattice quantum systems in first quantization.
A family of continuous-variable trial wavefunctons is introduced which naturally generalizes the Boltzmann machine (RBM) wavefunction.
Results are compared against those obtained from partial differential equation (PDE) based scalable eigensolvers.
arXiv Detail & Related papers (2021-07-15T03:53:14Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.