Continuous-variable neural-network quantum states and the quantum rotor
model
- URL: http://arxiv.org/abs/2107.07105v1
- Date: Thu, 15 Jul 2021 03:53:14 GMT
- Title: Continuous-variable neural-network quantum states and the quantum rotor
model
- Authors: James Stokes, Saibal De, Shravan Veerapaneni, Giuseppe Carleo
- Abstract summary: We study neural-network quantum state algorithms for analyzing continuous-variable lattice quantum systems in first quantization.
A family of continuous-variable trial wavefunctons is introduced which naturally generalizes the Boltzmann machine (RBM) wavefunction.
Results are compared against those obtained from partial differential equation (PDE) based scalable eigensolvers.
- Score: 2.3398944692275476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We initiate the study of neural-network quantum state algorithms for
analyzing continuous-variable lattice quantum systems in first quantization. A
simple family of continuous-variable trial wavefunctons is introduced which
naturally generalizes the restricted Boltzmann machine (RBM) wavefunction
introduced for analyzing quantum spin systems. By virtue of its simplicity, the
same variational Monte Carlo training algorithms that have been developed for
ground state determination and time evolution of spin systems have natural
analogues in the continuum. We offer a proof of principle demonstration in the
context of ground state determination of a stoquastic quantum rotor
Hamiltonian. Results are compared against those obtained from partial
differential equation (PDE) based scalable eigensolvers. This study serves as a
benchmark against which future investigation of continuous-variable neural
quantum states can be compared, and points to the need to consider deep network
architectures and more sophisticated training algorithms.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions [15.044543674753308]
Quantum simulators offer the potential to utilize the quantum nature of a physical system to study another physical system.
The variational-quantum-eigensolver algorithm is a particularly promising application for investigating molecular electronic structures.
Spin-based solid-state qubits have the advantage of long decoherence time and high-fidelity quantum gates.
arXiv Detail & Related papers (2024-07-23T09:17:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Quantum Sampling Algorithms, Phase Transitions, and Computational
Complexity [0.0]
Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics.
The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire probability distribution followed by a projective measurement.
We investigate the complexity of adiabatically preparing such quantum states for the Gibbs distributions of various models including the Ising chain, hard-sphere models on different graphs, and a model encoding the unstructured search problem.
arXiv Detail & Related papers (2021-09-07T11:43:45Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Chaos and Complexity from Quantum Neural Network: A study with Diffusion
Metric in Machine Learning [0.0]
We study the phenomena of quantum chaos and complexity in the machine learning dynamics of Quantum Neural Network (QNN)
We employ a statistical and differential geometric approach to study the learning theory of QNN.
arXiv Detail & Related papers (2020-11-16T10:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.