Inpainting Pathology in Lumbar Spine MRI with Latent Diffusion
- URL: http://arxiv.org/abs/2406.02477v1
- Date: Tue, 4 Jun 2024 16:47:47 GMT
- Title: Inpainting Pathology in Lumbar Spine MRI with Latent Diffusion
- Authors: Colin Hansen, Simas Glinskis, Ashwin Raju, Micha Kornreich, JinHyeong Park, Jayashri Pawar, Richard Herzog, Li Zhang, Benjamin Odry,
- Abstract summary: We propose an efficient method for inpainting pathological features onto healthy anatomy in MRI.
We evaluate the method's ability to insert disc herniation and central canal stenosis in lumbar spine sagittal T2 MRI.
- Score: 4.410798232767917
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Data driven models for automated diagnosis in radiology suffer from insufficient and imbalanced datasets due to low representation of pathology in a population and the cost of expert annotations. Datasets can be bolstered through data augmentation. However, even when utilizing a full suite of transformations during model training, typical data augmentations do not address variations in human anatomy. An alternative direction is to synthesize data using generative models, which can potentially craft datasets with specific attributes. While this holds promise, commonly used generative models such as Generative Adversarial Networks may inadvertently produce anatomically inaccurate features. On the other hand, diffusion models, which offer greater stability, tend to memorize training data, raising concerns about privacy and generative diversity. Alternatively, inpainting has the potential to augment data through directly inserting pathology in medical images. However, this approach introduces a new challenge: accurately merging the generated pathological features with the surrounding anatomical context. While inpainting is a well established method for addressing simple lesions, its application to pathologies that involve complex structural changes remains relatively unexplored. We propose an efficient method for inpainting pathological features onto healthy anatomy in MRI through voxelwise noise scheduling in a latent diffusion model. We evaluate the method's ability to insert disc herniation and central canal stenosis in lumbar spine sagittal T2 MRI, and it achieves superior Frechet Inception Distance compared to state-of-the-art methods.
Related papers
- Comparative Analysis of Diffusion Generative Models in Computational Pathology [11.698817924231854]
Diffusion Generative Models (DGM) have rapidly surfaced as emerging topics in the field of computer vision.
This paper presents an in-depth comparative analysis of diffusion methods applied to a pathology dataset.
Our analysis extends to datasets with varying Fields of View (FOV), revealing that DGMs are highly effective in producing high-quality synthetic data.
arXiv Detail & Related papers (2024-11-24T05:09:43Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly
Detection [8.737589725372398]
We introduce a novel unsupervised approach, called PHANES (Pseudo Healthy generative networks for ANomaly)
Our method has the capability of reversing anomalies, preserving healthy tissue and replacing anomalous regions with pseudo-healthy reconstructions.
We demonstrate the effectiveness of PHANES in detecting stroke lesions in T1w brain MRI datasets and show significant improvements over state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2023-03-15T08:54:20Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
We propose a method based on diffusion models to detect and segment anomalies in brain imaging.
Our diffusion models achieve competitive performance compared with autoregressive approaches across a series of experiments with 2D CT and MRI data.
arXiv Detail & Related papers (2022-06-07T17:30:43Z) - Covid-19 Detection from Chest X-ray and Patient Metadata using Graph
Convolutional Neural Networks [6.420262246029286]
We propose a novel Graph Convolution Neural Network (GCN) that is capable of identifying bio-markers of Covid-19 pneumonia.
The proposed method exploits important relational knowledge between data instances and their features using graph representation and applies convolution to learn the graph data.
arXiv Detail & Related papers (2021-05-20T13:13:29Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.