Comparative Analysis of Diffusion Generative Models in Computational Pathology
- URL: http://arxiv.org/abs/2411.15719v1
- Date: Sun, 24 Nov 2024 05:09:43 GMT
- Title: Comparative Analysis of Diffusion Generative Models in Computational Pathology
- Authors: Denisha Thakkar, Vincent Quoc-Huy Trinh, Sonal Varma, Samira Ebrahimi Kahou, Hassan Rivaz, Mahdi S. Hosseini,
- Abstract summary: Diffusion Generative Models (DGM) have rapidly surfaced as emerging topics in the field of computer vision.
This paper presents an in-depth comparative analysis of diffusion methods applied to a pathology dataset.
Our analysis extends to datasets with varying Fields of View (FOV), revealing that DGMs are highly effective in producing high-quality synthetic data.
- Score: 11.698817924231854
- License:
- Abstract: Diffusion Generative Models (DGM) have rapidly surfaced as emerging topics in the field of computer vision, garnering significant interest across a wide array of deep learning applications. Despite their high computational demand, these models are extensively utilized for their superior sample quality and robust mode coverage. While research in diffusion generative models is advancing, exploration within the domain of computational pathology and its large-scale datasets has been comparatively gradual. Bridging the gap between the high-quality generation capabilities of Diffusion Generative Models and the intricate nature of pathology data, this paper presents an in-depth comparative analysis of diffusion methods applied to a pathology dataset. Our analysis extends to datasets with varying Fields of View (FOV), revealing that DGMs are highly effective in producing high-quality synthetic data. An ablative study is also conducted, followed by a detailed discussion on the impact of various methods on the synthesized histopathology images. One striking observation from our experiments is how the adjustment of image size during data generation can simulate varying fields of view. These findings underscore the potential of DGMs to enhance the quality and diversity of synthetic pathology data, especially when used with real data, ultimately increasing accuracy of deep learning models in histopathology. Code is available from https://github.com/AtlasAnalyticsLab/Diffusion4Path
Related papers
- Combining Domain-Specific Models and LLMs for Automated Disease Phenotyping from Survey Data [0.0]
This pilot study investigated the potential of combining a domain-specific model, BERN2, with large language models (LLMs) to enhance automated phenotyping from research survey data.
We employed BERN2, a named entity recognition and normalization model, to extract information from the ORIGINS survey data.
BERN2 demonstrated high performance in extracting and normalizing disease mentions, and the integration of LLMs, particularly with Few Shot Inference and RAG orchestration, further improved accuracy.
arXiv Detail & Related papers (2024-10-28T02:55:03Z) - Inpainting Pathology in Lumbar Spine MRI with Latent Diffusion [4.410798232767917]
We propose an efficient method for inpainting pathological features onto healthy anatomy in MRI.
We evaluate the method's ability to insert disc herniation and central canal stenosis in lumbar spine sagittal T2 MRI.
arXiv Detail & Related papers (2024-06-04T16:47:47Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology
Image Analysis [4.724009208755395]
We present ViT-DAE, which integrates vision transformers (ViT) and diffusion autoencoders for high-quality histopathology image synthesis.
Our approach outperforms recent GAN-based and vanilla DAE methods in generating realistic images.
arXiv Detail & Related papers (2023-04-03T15:00:06Z) - NASDM: Nuclei-Aware Semantic Histopathology Image Generation Using
Diffusion Models [3.2996723916635267]
First-of-its-kind nuclei-aware semantic tissue generation framework (NASDM)
NASDM can synthesize realistic tissue samples given a semantic instance mask of up to six different nuclei types.
These synthetic images are useful in applications in pathology, validation of models, and supplementation of existing nuclei segmentation datasets.
arXiv Detail & Related papers (2023-03-20T22:16:03Z) - A Morphology Focused Diffusion Probabilistic Model for Synthesis of
Histopathology Images [0.5541644538483947]
Deep learning methods have made significant advances in the analysis and classification of tissue images.
These synthetic images have several applications in pathology including utilities in education, proficiency testing, privacy, and data sharing.
arXiv Detail & Related papers (2022-09-27T05:58:35Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.