論文の概要: Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps
- arxiv url: http://arxiv.org/abs/2406.02490v1
- Date: Tue, 4 Jun 2024 17:00:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:10:17.550414
- Title: Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps
- Title(参考訳): Ai-Sampler:インボリューティブマップを用いたマルコフカーネルの逆学習
- Authors: Evgenii Egorov, Ricardo Valperga, Efstratios Gavves,
- Abstract要約: 本稿では,マルコフ連鎖の遷移核のパラメータ化と訓練を行い,効率的なサンプリングと良好な混合を実現する方法を提案する。
この訓練方法は、チェーンの定常分布とデータの経験分布との総変動距離を最小化する。
- 参考スコア(独自算出の注目度): 28.229819253644862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Markov chain Monte Carlo methods have become popular in statistics as versatile techniques to sample from complicated probability distributions. In this work, we propose a method to parameterize and train transition kernels of Markov chains to achieve efficient sampling and good mixing. This training procedure minimizes the total variation distance between the stationary distribution of the chain and the empirical distribution of the data. Our approach leverages involutive Metropolis-Hastings kernels constructed from reversible neural networks that ensure detailed balance by construction. We find that reversibility also implies $C_2$-equivariance of the discriminator function which can be used to restrict its function space.
- Abstract(参考訳): マルコフ連鎖モンテカルロ法は、複雑な確率分布からサンプリングする多元的手法として統計学で人気を博している。
本研究では,マルコフ連鎖の遷移核のパラメータ化と訓練を行い,効率的なサンプリングと良好な混合を実現する手法を提案する。
この訓練方法は、チェーンの定常分布とデータの経験分布との総変動距離を最小化する。
我々のアプローチは、建設による詳細なバランスを確保するために、可逆ニューラルネットワークから構築されたインボリューティブなメトロポリス・ハスティングスカーネルを活用する。
可逆性はまた、その函数空間を制限するために使用できる判別関数の$C_2$-equivarianceを意味する。
関連論文リスト
- Discrete generative diffusion models without stochastic differential equations: a tensor network approach [1.5839621757142595]
拡散モデル(DM)は、生成機械学習の手法のクラスである。
ネットワーク(TN)を用いて,このような離散モデルを効率的に定義し,サンプリングする方法を示す。」
論文 参考訳(メタデータ) (2024-07-15T18:00:11Z) - Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows [2.2530496464901106]
連続正規化フロー(CNF)は、ニューラルネットワークを用いて前記経路を生成するベクトル場をモデル化することにより、基準分布と目標分布の間の確率経路を学習する。
近年,Lipman et al. (2022) は生成モデルにおけるCNFsの簡易かつ安価な学習法であるフローマッチング (FM) を導入した。
本稿では,この手法をマルコフサンプリング法をFM目標評価に応用し,学習したCNFを用いてモンテカルロサンプリングを改善することにより,確率的推論に再利用する。
論文 参考訳(メタデータ) (2024-05-23T10:08:19Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
本稿では,ニューラルネットワークによる安定確率分布の伝播手法を提案する。
提案手法は局所線形化に基づいており,ReLU非線型性に対する全変動距離の近似値として最適であることを示す。
論文 参考訳(メタデータ) (2024-02-13T09:40:19Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Learn Quasi-stationary Distributions of Finite State Markov Chain [2.780408966503282]
準定常分布の表現を計算するための強化学習(RL)手法を提案する。
候補分布と真の目標分布によって誘導される2つのマルコフ経路分布のKL偏差を最小化する。
対応する政策勾配定理を導出し,最適な解法と値関数を学習するためのアクター・クリティカルなアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-11-19T02:56:34Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
ニューラルネットワークを用いて各戻り分布から統計量の有限集合を学習する手法を定式化する。
我々の手法は、戻り分布とベルマン目標の間のモーメントの全ての順序を暗黙的に一致させるものとして解釈できる。
Atariゲームスイートの実験により,本手法は標準分布RLベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-24T05:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。